Enhancement of Light Absorption in the Active Layer of Organic Solar Cells using Ag:SiO2 Core-Shell Nanoparticles
DOI:
10.29303/jppipa.v8i6.2393Published:
2022-12-30Issue:
Vol. 8 No. 6 (2022): DecemberKeywords:
organic solar cell, light absorption enhancement, finite element method, Ag:SiO2 nanoparticle, Surface plasmon resonanceResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Organic solar cells still suffer from relatively low conversion efficiency despite significant progress. An Ag:SiO2 core-shell nanoparticle embedded inside the active layer of an organic solar cell is expected to enhance light absorption. Light absorption within the active layer consisting of 70 nm thickness PEDOT: PSS and P3HT: PCBM was calculated using the finite element method for a variable diameter of the silver core, the thickness of the SiO2 shell, and the relative position of nanoparticle inside the active layer. The diameter of the Ag nanoparticle varies from 20 to 50 nm, the thickness of SiO2 varies from 1 to 4 nm, and the position was shifted vertically to 70 nm. The maximum light absorption in the active layer is obtained for silver nanoparticles with a diameter of 40 nm and a SiO2 thickness of 1 nm. The optimum position of the core-shell nanoparticle was found to be not at the interface between the PEDOT: PSS and P3HT: PCBM layers but a little bit shifted down into P3HT: PCBM layer. The highest increase of light absorption, compared to without Ag:SiO2, is 210%, much higher than reported in the literature. Increasing absorption is related to the excitation of surface plasmon resonance of Ag:SiO2 nanoparticles leading to the local field and scattering enhancement in the active layer of the organic solar cell
References
Ahn, S., Rourke, D., & Park, W. (2016). Plasmonic nanostructures for organic photovoltaic devices. Journal of Optics, 18(3), 033001. https://doi.org/10.1088/20408978/18/3/033001
American Society for Testing and Materials. (1987). Standard tables for terrestrial solar spectral irradiance at air mass 1.5 for a 37° tilted surface. Philadelphia, PA: American Society for Testing and Materials.
Askari, M. B. (2014). Introduction to Organic Solar Cells. Sustainable Energy, 2(3), 85-90. Retrieved from http://pubs.sciepub.com/rse/2/3/2/index.html
Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nat. Mater., 9, 205–213. Retrieved from https://www.nature.com/articles/nmat2629
Baek, S.-W., Noh, J., Lee, C.-H., Kim, B., Seo, M.-K., & Lee, J.-Y. (2013). Plasmonic Forward Scattering Effect in Organic Solar Cells: A Powerful Optical Engineering Method. Sci. Rep., 3, 1726. https://www.nature.com/articles/srep01726
Casper, J. K. (2010). Fossil Fuels and Pollution: The Future of Air Quality (Global Warming). New York: Facts on File.
Catchpole, K. A., & Polman, A. (2008). Plasmonic solar cells. Optics express, 16(26), 21793-21800. Retrieved from https://opg.optica.org/oe/fulltext.cfm?uri=oe-16-26-21793&id=175483
Chen, L. X. (2019). Organic Solar Cells: Recent Progress and Challenges. ACS Energy Lett., 4, 2537−2539. https://doi.org/10.1021/acsenergylett.9b02071
Chidichimo, G., & Filippelli, L. (2010). Organic Solar Cells: Problems and Perspectives. International Journal of Photoenergy, 2010, 123534. https://doi.org/10.1155/2010/123534
Dou, L., You, J., Yang, J., Chen, C.-C., He, Y., Murase, S., Moriarty, T., Emery, K., Li, G., & Yang, Y. (2012). Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics, 6, 180–185. Retrieved from https://www.nature.com/articles/nphoton.2011.356
Falke, S. M., Rozzi, C. A., Brida, D., Maiuri, M., Amato, M., Sommer, E., Sio, A. D., Rubio, A., Cerullo, G., Molinari, E., & Lienau, C. (2014). Coherent ultrafast charge transfer in an organic photovoltaic blend. Science, 344(6187), 1001-1005. Retrieved from https://www.science.org/doi/abs/10.1126/science.1249771
Feng, L., Niu, M., Wen, Z., & Hao, X. (2018). Recent Advances of Plasmonic Organic Solar Cells: Photophysical Investigations. Polymers, 10(123), 1-33. https://doi.org/10.3390/polym10020123
He, C., Chen, Z., Wang, T., Shen, Z., Li, Y., Zhou, J., Yu, J., Fang, H., Li, Y., Li, S., Lu, X., Ma, W., Gao, F., Xie, Z., Coropceanu, V., Zhu, H., Bredas, J.-L., Zuo, L., & Chen, H. (2022). Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%. Nature Comm., 13, 2598. Retrieved from https://www.nature.com/articles/s41467-022-30225-7
Humphries, S. (2010). Finite-element methods for electromagnetics. Albuquerque, New Mexico: CRC Press.
Jin, J.-M. (2014). The Finite Element Method in Electromagnetics (3 ed.). New York: Wiley-IEEE Press.
Kim, I., Jeong, D. S., Lee, T. S., Lee, W. S., & Lee, K.-S. (2012). Plasmonic nanograting design for inverted polymer solar cells. Optics Express, 20, A729–A739. https://doi.org/10.1364/OE.20.00A729
Kozanoglu, D., Apaydin, D. H., Cirpan, A., & Esenturk, E. N. (2013). Power conversion efficiency enhancement of organic solar cells by addition of gold nanostars, nanorods, and nanospheres. Organic Electronics, 14(7), 1720-1727. https://doi.org/10.1016/j.orgel.2013.04.008
Liu, F., Xie, W., Xu, Q., Liu, Y., Cui, K., Feng, X., Zhang, W., & Huang, Y. (2013). Plasmonic Enhanced Optical Absorption in Organic Solar Cells With Metallic Nanoparticles. IEEE Photonics Journal, 5(4), 8400509. https://doi.org/10.1109/JPHOT.2013.2274767
Manzhos, S., Giorgi, G., Lüder, J., & Ihara, M. (2021). Modeling of plasmonic properties of nanostructures for next generation solar cells and beyond. Advances in Physics: X 6(1), 1908848. https://doi.org/10.1080/23746149.2021.1908848
Murdock, H. E., Gibb, D., André, T., Sawin, J. L., Brown, A., Ranalder, L., ... & Brumer, L. (2021). Renewables 2021-Global status report. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:52059346
N’Konou, K., Peres, L., & Torchio, P. (2018). Optical Absorption Modeling of Plasmonic Organic Solar Cells Embedding Silica-Coated Silver Nanospheres. Plasmonics, 13, 297–303. Retrieved from https://link.springer.com/article/10.1007/s11468-017-0514-4
Perdana, I., & Muldarisnur, M. (2020). Pengaruh Variasi Periodisitas Nanopartikel Ag-SiO2 terhadap Peningkatan Absorpsi Cahaya Matahari pada Sel Surya Organik (in bahasa). Jurnal Fisika Unand, 9(2), 202-208. Retrieved from http://jfu.fmipa.unand.ac.id/index.php/jfu/article/view/490
Perdana, I., & Muldarisnur, M. (2021). Optimization of Ag-SiO2 core-shell nanoparticles arrangement for light absorption enhancement in organic solarcells. AIP Conference Proceedings, 2320, 030008. https://doi.org/10.1063/5.0037507
Perez, M., & Perez, R. (2022). A fundamental look at supply side energy reserves for the planet. Solar Energy Advances, 2, 100014. https://doi.org/10.1016/j.seja.2022.100014
Phengdaam, A., Nootchanat, S., Ishikawa, R., Lertvachirapaiboon, C., Shinbo, K., Kato, K., Ekgasit, S., & Baba, A. (2021). Improvement of organic solar cell performance by multiple plasmonic excitations using mixed-silver nanoprisms. Journal of Science: Advanced Materials and Devices, 6(2), 264-270. https://doi.org/10.1016/j.jsamd.2021.02.007
Qu, D., Liu, F., Huang, Y., Xie, W., & Xu, Q. (2011). Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles. Optics Express, 19(24), 24795-24803. https://doi.org/10.1364/OE.19.024795
Rana, A., Gupta, N., Lochan, A., Sharma, G. D., Chand, S., Kumar, M., & Singh, R. K. (2016). Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell. Journal of Applied Physics, 120, 063102. https://doi.org/10.1063/1.4960341
Riede, M., Spoltore, D., & Leo, K. (2021). Organic Solar Cells—The Path to Commercial Success. Adv. Energy Mater., 11, 2002653. https://doi.org/10.1002/aenm.202002653
Shabani, L., Mohammadi, A., & Jalali, T. (2022). Numerical Study of Plasmonic Effects of Ag Nanoparticles Embedded in the Active Layer on Performance Polymer Organic Solar Cells. Plasmonics, 17, 491–504. Retrieved from https://link.springer.com/article/10.1007/s11468-021-01539-x
Tvingstedt, K., Zilio, S. D., Inganäs, O., & Tormen, M. (2008). Trapping light with micro lenses in thin film organic photovoltaic cells. Optics Express, 16(26), 21608-21615. https://doi.org/10.1364/OE.16.021608
Author Biographies
Fahendri Fahendri, Universitas Andalas
Ilham Perdana, Universitas Andalas
Zulfi Abdullah, Universitas Andalas
Mulda Muldarisnur, Universitas Andalas
License
Copyright (c) 2022 Fahendri Fahendri, Ilham Perdana, Zulfi Abdullah, Mulda Muldarisnur
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).