Effectiveness of Activated Carbon CaCl2 and NaNO3 Reducing Fatty Acids and Increasing the Quantity of Biodiesel Production
DOI:
10.29303/jppipa.v9i1.2624Published:
2023-01-31Issue:
Vol. 9 No. 1 (2023): JanuaryKeywords:
Activated Carbon, Biodiesel, Fatty acidsResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
The study aims to identify the ability of carbon activated CaCl2 and NaNO3 in reducing fatty acids in jelah oil in biodiesel synthesis. This research is an experimental research with a quantitative descriptive approach. The variables measured in this study are the acidity level and quantity of biodiesel production from used cooking oil. The instruments used in this study include PH meters and Gas Cromatography mass Spectoscopy (GC-MS). The pH meter is used to measure the acid concentration of used cooking oil after going through a filtration process using activated carbon CaCl2, NaNO3, and inactivated carbon. The GC-MS instrument is used to identify the quantity of biodicell production made from used cooking oil. The data obtained are presented in the form of tables and graphs to identify the effect of the treatment given. Based on measurements of PH meters and GC-MS activated carbon CaCl2 is proven to be able to reduce fatty acids from an initial pH of 4 to 7 and get a biodicell of 100%. Based on these finding, it can be concluded that. Use of CaCl2 activated carbon has provev to be the most effective in reducing fatty acids and increasing the quantity of biodiesel production
References
Abbaszadeh, A., B. Ghobadian, G. Najafi, and T. Yusaf. (2014). An Experimental Investigation of the Effective Parameters on Wet Washing of Biodiesel Purification. International Journal of Automotive and Mechanical Engineering, 9(1), 1525–37. https://doi.org/10.15282/ijame.9.2013.4.0126
Abidin. (2013). Quantitative Analysis of Fatty Acids Composition in the Used Cooking Oil (UCO) by Gas Chromatography−mass Spectrometry (GC–MS). The Canadian Journal of Chemical Engineering, 91(12), 1896-1903. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/cjce.21848.
Albuquerque. (2020). Are Chloropropanols and Glycidyl Fatty Acid Esters a Matter of Concern in Palm Oil?. Trends in Food Science & Technology, 105, 494-514 https://doi.org/10.1016/j.tifs.2019.01.005.
Ardiyanti, A. D., Adhitama, L., & Wahyutiyani, R. (2020). Efficient Compost Fertilizer with Addition of Fatty Acid Results of Used Cooking Oil Saponification Reaction. In Proceeding International Conference on Science and Engineering, 3, 125-128. https://doi.org/10.14421/icse.v3.483
Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2011). Biodiesel separation and purification: a review. Renewable Energy, 36(2), 437-443 https://doi.org/10.1016/j.renene.2010.07.019.
Awogbemi, Omojola, Emmanuel Idoko Onuh, and Freddie L. Inambao. (2019). Comparative Study of Properties and Fatty Acid Composition of Some Neat Vegetable Oils and Waste Cooking Oils. International Journal of Low-Carbon Technologies, 14(3), 417–25. https://doi.org/10.1093/ijlct/ctz038.
Bahadi, M., Salih, N., & Salimon, J. (2021). D-Optimal Design Optimization for the Separation of Oleic Acid from Malaysian High Free Fatty Acid Crude Palm Oil Fatty Acids Mixture Using Urea Complex Fractionation. Applied Science and Engineering Progress, 14(2), 175–86. https://doi.org/10.14416/j.asep.2021.03.004.
Barrea, L., Muscogiuri, G., Annunziata, G., Laudisio, D., Pugliese, G., Salzano, C., ... & Savastano, S. (2019). From gut microbiota dysfunction to obesity: could short-chain fatty acids stop this dangerous course?. Hormones, 18(3), 245-250. https://doi.org/10.1007/s42000-019-00100-0.
Bhatnagar, A. S., Prasanth Kumar, P. K., Hemavathy, J., & Gopala Krishna, A. G. (2009). Fatty acid composition, oxidative stability, and radical scavenging activity of vegetable oil blends with coconut oil. Journal of the American Oil Chemists' Society, 86(10), 991-999. https://doi.org/10.1007/s11746-009-1435-y.
Bouaid, A., Vázquez, R., Martinez, M., & Aracil, J. (2016). Effect of free fatty acids contents on biodiesel quality. Pilot plant studies. Fuel, 174, 54-62 https://doi.org/10.1016/j.fuel.2016.01.018.
Bukhari, N. A., Jahim, J. M., Loh, S. K., Nasrin, A. B., Harun, S., & Abdul, P. M. (2020). Organic acid pretreatment of oil palm trunk biomass for succinic acid production. Waste and Biomass Valorization, 11(10), 5549-5559. https://doi.org/10.1007/s12649-020-00953-2.
Capson-Tojo, G., Moscoviz, R., Ruiz, D., Santa-Catalina, G., Trably, E., Rouez, M., ... & Escudié, R. (2018). Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste. Bioresource technology, 260, 157-168. https://doi.org/10.1016/j.biortech.2018.03.097.
Changmai , B., Vanlalveni, C., Ingle, A. P., Bhagat, R., & Rokhum, S. L. (2020). Widely used catalysts in biodiesel production: a review. RSC advances, 10(68), 41625-41679. https://doi.org/10.1039/D0RA07931F.
Chatterjee, P., Fernando, M., Fernando, B., Dias, C. B., Shah, T., Silva, R., ... & Martins, R. N. (2020). Potential of coconut oil and medium chain triglycerides in the prevention and treatment of Alzheimer’s disease. Mechanisms of Ageing and Development, 186, 111209. https://doi.org/10.1016/j.mad.2020.111209.
Choe, E., & Min, D. B. (2006). Mechanisms and factors for edible oil oxidation. Comprehensive reviews in food science and food safety, 5(4), 169-186. https://doi.org/10.1111/j.1541-4337.2006.00009.x.
Chozhavendhan , S., Singh, M. V. P., Fransila, B., Kumar, R. P., & Devi, G. K. (2020). A review on influencing parameters of biodiesel production and purification processes. Current Research in Green and Sustainable Chemistry, 1, 1-6. https://doi.org/10.1016/j.crgsc.2020.04.002.
Corro, G., Sánchez, N., Pal, U., Cebada, S., & Fierro, J. L. G. (2017). Solar-irradiation driven biodiesel production using Cr/SiO2 photocatalyst exploiting cooperative interaction between Cr6+ and Cr3+ moieties. Applied Catalysis B: Environmental, 203, 43-52. https://doi.org/10.1016/j.apcatb.2016.10.005.
Fonseca , J. M., Teleken, J. G., de Cinque Almeida, V., & da Silva, C. (2019). Biodiesel from waste frying oils: Methods of production and purification. Energy Conversion and Management, 184, 205-218. https://doi.org/10.1016/j.enconman.2019.01.061.
Gardy , J., Hassanpour, A., Lai, X., Ahmed, M. H., & Rehan, M. (2017). Biodiesel production from used cooking oil using a novel surface functionalised TiO2 nano-catalyst. Applied Catalysis B: Environmental, 207, 297-310. https://doi.org/10.1016/j.apcatb.2017.01.080.
Glass, R. L. (1971). Alcoholysis, saponification and the preparation of fatty acid methyl esters. Lipids, 6(12), 919-925. https://doi.org/10.1007/BF02531175.
Glish , G. L., & Vachet, R. W. (2003). The basics of mass spectrometry in the twenty-first century. Nature reviews drug discovery, 2(2), 140-150. https://doi.org/10.1038/nrd1011.
Gordon, M. H., & Magos, P. (1983). The effect of sterols on the oxidation of edible oils. Food Chemistry, 10(2), 141-147. https://doi.org/10.1016/0308-8146(83)90030-4.
Hernandez-Hernandez, , F., JUANA MARIA, S. G., & Domingo-Coscollola, M. (2018). Cartographies as spaces of inquiry to explore of teachers' nomadic learning trajectories. Digital Education Review, 33, 105–19. https://doi.org/10.1344/der.2018.33.105-119.
Jiang, S., Xie, Y., Li, M., Guo, Y., Cheng, Y., Qian, H., & Yao, W. (2020). Evaluation on the oxidative stability of edible oil by electron spin resonance spectroscopy. Food chemistry, 309, 125714. https://doi.org/10.1016/j.foodchem.2019.125714.
Karminingtyas , S. R., Vifta, R. L., & Lestari, P. (2021). Pencegahan Dini Bahaya Kolesterol dan Penyertanya Melalui Pengolahan Limbah Jelantah menjadi Waste Soap Serbaguna. INDONESIAN JOURNAL OF COMMUNITY EMPOWERMENT (IJCE), 3(1), 6-12. Retrieved from https://jurnal.unw.ac.id/index.php/IJCE/article/view/890.
Kastner , J. R., Miller, J., Geller, D. P., Locklin, J., Keith, L. H., & Johnson, T. (2012). Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catalysis Today, 190(1), 122-132. https://doi.org/10.1016/j.cattod.2012.02.006.
Kimura, I., Ichimura, A., Ohue-Kitano, R., & Igarashi, M. (2019). Free fatty acid receptors in health and disease. Physiological reviews, 100(1), 171-210. https://doi.org/10.1152/physrev.00041.2018.
KunWu., Xu, W., Wang, C., Lu, J., & He, X. (2022). Saponification with calcium has different impacts on anaerobic digestion of saturated/unsaturated long chain fatty acids. Bioresource Technology, 343, 126134. https://doi.org/10.1016/j.biortech.2021.126134.
Kunz, M., Simon, J. C., & Saalbach, A. (2019). Psoriasis: obesity and fatty acids. Frontiers in Immunology, 10, 1807. https://doi.org/10.3389/fimmu.2019.01807.
Lee, K. R., Midgette, Y., & Shah, R. (2019). Fish oil derived omega 3 fatty acids suppress adipose NLRP3 inflammasome signaling in human obesity. Journal of the Endocrine Society, 3(3), 504-515. https://doi.org/10.1210/js.2018-00220.
Lee , Y. Y., Tang, T. K., Chan, E. S., Phuah, E. T., Lai, O. M., Tan, C. P., ... & Tan, J. S. (2022). Medium chain triglyceride and medium-and long chain triglyceride: metabolism, production, health impacts and its applications–a review. Critical reviews in food science and nutrition, 62(15), 4169-4185. https://doi.org/10.1080/10408398.2021.1873729.
Liu, Y., Li, J., Cheng, Y., & Liu, Y. (2019). Effect of frying oils’ fatty acid profile on quality, free radical and volatiles over deep-frying process: A comparative study using chemometrics. Lwt, 101, 331-341. https://doi.org/10.1016/j.lwt.2018.11.033.
Long, F., Liu, W., Jiang, X., Zhai, Q., Cao, X., Jiang, J., & Xu, J. (2021). State-of-the-art technologies for biofuel production from triglycerides: A review. Renewable and Sustainable Energy Reviews, 148, 111269. https://doi.org/10.1016/j.rser.2021.111269.
Marino , V. M., Rapisarda, T., Caccamo, M., Valenti, B., Priolo, A., Luciano, G., ... & Pauselli, M. (2021). Effect of Dietary Hazelnut Peels on the Contents of Fatty Acids, Cholesterol, Tocopherols, and on the Shelf-Life of Ripened Ewe Cheese. Antioxidants, 10(4), 538. https://doi.org/10.3390/antiox10040538.
Mouodi, S., Hosseini, S. R., Cumming, R. G., Bijani, A., Esmaeili, H., & Ghadimi, R. (2019). Physiological risk factors for cardiovascular disease in middle-aged (40-60 year) adults and their association with dietary intake, northern Iran. Caspian journal of internal medicine, 10(1), 55. https://doi.org/10.22088%2Fcjim.10.1.55.
Mozzon, , M., Foligni, R., & Mannozzi, C. (2020). Current knowledge on interspecific hybrid palm oils as food and food ingredient. Foods, 9(5), 631. https://doi.org/10.3390/foods9050631.
Muanruksa , P., & Kaewkannetra, P. (2020). Combination of fatty acids extraction and enzymatic esterification for biodiesel production using sludge palm oil as a low-cost substrate. Renewable Energy, 146, 901-906. https://doi.org/10.1016/j.renene.2019.07.027.
Niu, S., Ning, Y., Lu, C., Han, K., Yu, H., & Zhou, Y. (2018). Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Conversion and Management, 163, 59-65. https://doi.org/10.1016/j.enconman.2018.02.055.
Ormazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C., & Zuñiga, F. A. (2018). Association between insulin resistance and the development of cardiovascular disease. Cardiovascular diabetology, 17(1), 1-14. https://doi.org/10.1186/s12933-018-0762-4.
Park, Y., & Han, J. (2021). Blood Lead Levels and Cardiovascular Disease Risk: Results from the Korean National Health and Nutrition Examination Survey. International Journal of Environmental Research and Public Health, 18(19), 10315. https://doi.org/10.3390/ijerph181910315.
Pinho, M. L., Braz, C. G., Matos, H. A., Pinheiro, C. I., & Granjo, J. F. (2022). Control of an industrial packed extraction column for biodiesel washing. In Computer Aided Chemical Engineering, 51, 1123-1128. https://doi.org/10.1016/B978-0-323-95879-0.50188-0.
Rattanaporn, K., Tantayotai, P., Phusantisampan, T., Pornwongthong, P., & Sriariyanun, M. (2018). Organic acid pretreatment of oil palm trunk: effect on enzymatic saccharification and ethanol production. Bioprocess and biosystems engineering, 41(4), 467-477. https://doi.org/10.1007/s00449-017-1881-0.
Rossi, M., Alamprese, C., & Ratti, S. (2007). Tocopherols and tocotrienols as free radical-scavengers in refined vegetable oils and their stability during deep-fat frying. Food Chemistry, 102(3), 812-817. https://doi.org/10.1016/j.foodchem.2006.06.016.
Sahar, S., Iqbal, J., Ullah, I., Bhatti, H. N., Nouren, S., Nisar, J., & Iqbal, M. (2018). Biodiesel production from waste cooking oil: an efficient technique to convert waste into biodiesel. Sustainable cities and society, 41, 220-226. https://doi.org/10.1016/j.scs.2018.05.037.
Sankararaman, S., & Sferra, T. J. (2018). Are we going nuts on coconut oil?. Current nutrition reports, 7(3), 107-115. doi: 10.1007/s13668-018-0230-5.
Sarno, M., & Iuliano, M. (2019). Biodiesel production from waste cooking oil. Green Processing and Synthesis, 8(1), 828-836. https://doi.org/10.1515/gps-2019-0053.
Silva , Y. P., Bernardi, A., & Frozza, R. L. (2020). The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in endocrinology, 11, 25. https://doi.org/10.3389/fendo.2020.00025
Surtini, & Badriyah, Z. (2021). Correlation of Repeat Cooking Oil Use to Increasing Cholesterol Levels in Community, Gandong Village, Bandung District, Tulungagung Regency In 2021. In The 3rd Joint International Conference, 3(1), 254-259. Retrieved from https://proceeding.tenjic.org/jic3/index.php/jic3/article/view/91
Wang, H. H., Liu, L. J., & Gong, S. W. (2017). Esterification of oleic acid to biodiesel over a 12-phosphotungstic acid-based solid catalyst. Journal of Fuel Chemistry and Technology, 45(3), 303-310. https://doi.org/10.1016/S1872-5813(17)30018-X.
Xie, Y., Jiang, S., Li, M., Guo, Y., Cheng, Y., Qian, H., & Yao, W. (2019). Evaluation on the formation of lipid free radicals in the oxidation process of peanut oil. LWT, 104, 24-29. https://doi.org/10.1016/j.lwt.2019.01.016.
Yang , Y., Zhang, Y., Li, Z., Zhao, Z., Quan, X., & Zhao, Z. (2017). Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition. Journal of cleaner production, 149, 1101-1108. https://doi.org/10.1016/j.jclepro.2017.02.156.
Zhuang, P., Wu, F., Mao, L., Zhu, F., Zhang, Y., Chen, X., ... & Zhang, Y. (2021). Egg and cholesterol consumption and mortality from cardiovascular and different causes in the United States: A population-based cohort study. PLoS medicine, 18(2), 1-23. https://doi.org/10.1371/journal.pmed.1003508.
Author Biographies
Muhali Muhali, Universitas Undikma
Hendrawani Hendrawani, Universitas Mandalika
Baiq Mirawati, Universitas Mandalika
Hulyadi Hulyadi, Universitas Pendidikan Mandalika
License
Copyright (c) 2023 Muhali Muhali, Hendrawani Hendrawani, Baiq Mirawati, Hulyadi Hulyadi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).