Study Review of the Speed of Light in Space-Time for STEM Student
DOI:
10.29303/jppipa.v9i2.2757Published:
2023-02-28Issue:
Vol. 9 No. 2 (2023): FebruaryKeywords:
General relativity, Physics education, Speed of lightResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
The author of this article aims to review the theory of relativity and its implications for physics education by using visual aids and a programming approach. The article will cover the concept of the speed of light in space-time in the context of relativity, and provide illustrations that explain the relationships in the context of general relativity. The focus of the article will be to introduce students to complex concepts and encourage their interest in the topic. The author reports success in teaching the basic concept of the speed of light in space-time to both elementary STEM students and high school students. While the theory of relativity has been taught at the secondary school level in some education systems, there is a lack of research on the effectiveness of using visual aids and a programming approach to enhance students' understanding of the concept. This article aims to fill the gap by evaluating the impact of this approach on students' understanding of the theory of relativity
References
Acharya, T. D., Subedi, A., & Lee, D. H. (2018). Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors, 18(8), 2580.
Agarana, M. C., Ede, A., & Iheanetu, O. (2017). Energy Conservation Analysis of Human Body Locomotion ModAcharya, T. D., Subedi, A., & Lee, D. H. (2018). Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors, 18(8). https://doi.org/10.3390/s18082580
Agarana, M. C., Ede, A., & Iheanetu, O. (2017). Energy Conservation Analysis of Human Body Locomotion Modelled as an Inverted Quadruple Pendulum Dynamical System. World Congress on Engineering and Computer Science. https://www.iaeng.org/publication/WCECS2017/WCECS2017_pp836-840.pdf
Alstein, P., Krijtenburg-Lewerissa, K., & Joolingen, W. R. (2021). Teaching and learning special relativity theory in secondary and lower undergraduate education: A literature review. Physical Review Physics Education Research, 17(2), 23101. https://doi.org/10.1103/PhysRevPhysEducRes.17.023101
Anjum, A., & Mishra, S. S. S. (2020). The Timeline Of Gravity. https://doi.org/10.48550/arXiv.2011.14014
Annulli, L., Cardoso, V., & Vicente, R. (2020). Stirred and shaken: Dynamical behavior of boson stars and dark matter cores. Physics Letters B, 811, 135944. https://doi.org/10.1016/j.physletb.2020.135944
Astro, R. B., & Humairo, S. (2019). Teori relativitas pada global positioning system (GPS. OPTIKA: Jurnal Pendidikan Fisika, 3(1), 96–102. https://doi.org/10.37478/optika.v3i1.121
Bacchini, F., Ripperda, B., Chen, A. Y., & Sironi, L. (2018). Generalized, energy-conserving numerical simulations of particles in general relativity. I. Time-like and null geodesics. The Astrophysical Journal Supplement Series, 237(1), 6. https://doi.org/10.48550/arXiv.1801.02378
Becerril, R., Valdez-Alvarado, S., Nucamendi, U., Sheoran, P., & Dávila, J. (2021). Mass parameter and the bounds on redshifts and blueshifts of photons emitted from geodesic particle orbiting in the vicinity of regular black holes. Physical Review D, 103(8), 84054. https://doi.org/10.1103/PhysRevD.103.084054
Bravo, T., Rätzel, D., & Fuentes, I. (2023). Gravitational time dilation in extended quantum systems: The case of light clocks in Schwarzschild spacetime. AVS Quantum Science, 5(1). https://doi.org/10.1116/5.0123228
Brown, J. M. (2018). The Fundamental Particles of Physics. Basic Research Press.
Carter, P. J., Lock, S. J., & Stewart, S. T. (2020). The energy budgets of giant impacts. Journal of Geophysical Research: Planets, 125(1). https://doi.org/10.1029/2019JE006042
Chael, A., Johnson, M. D., & Lupsasca, A. (2021). Observing the inner shadow of a black hole: A direct view of the event horizon. The Astrophysical Journal, 918(1), 6. https://doi.org/10.3847/1538-4357/ac09ee
Colmenero, N. P., Córdoba, J. V. A., & Alfonso, M. J. (2021). Relativistic positioning: Including the influence of the gravitational action of the sun and the moon and the earth’s oblateness on galileo satellites. Astrophysics and Space Science, 366(7), 1–19. https://doi.org/10.1007/s10509-021-03973-z
Damanik, A. (2022). Pendidikan Sebagai Pembentukan Watak Bangsa: Sebuah Refleksi Konseptual-Kritis dari Sudut Pandang Fisika. Sanata Dharma University Press.
Dodelson, S., & Schmidt, F. (2020). Modern cosmology. Academic press.
Dokuchaev, V. (2019). To see the invisible: Image of the event horizon within the black hole shadow. International Journal of Modern Physics D, 28(13). https://doi.org/10.48550/arXiv.1812.06787
Feng, G., & Huang, J. (2020). An optical perspective on the theory of relativity-I: Basic concepts and the equivalence principle. Optik, 224, 165686. https://doi.org/10.1016/j.ijleo.2020.165686
Feng, J. Q. (2020). Rotating Disk Galaxies without Dark Matter Based on Scientific Reasoning. Galaxies, 8(1), 9. https://doi.org/10.3390/galaxies8010009
Feynman, R. P., Morinigo, F. B., Wagner, W. G., Hatfield, B., Preskill, J., & Thorne, K. S. (2018). Feynman lectures on gravitation. CRC Press.
Giacomini, F., Castro-Ruiz, E., & Brukner, Č. (2019). Quantum mechanics and the covariance of physical laws in quantum reference frames. Nature Communications, 10(1), 1–13. https://doi.org/10.1038/s41467-018-08155-0
Harefa, D. (2021). Monograf Penggunaan Model Pembelajaran Meaningful Instructional design dalam pembelajaran fisika. Insan Cendekia Mandiri.
HenokTadesse, E. E., & Debrezeit, P. (2018). A Theoretical Framework of Absolute/Relative Motion and the Speed of Light. shorturl.at/apNS9
Hinds, W. C., & Zhu, Y. (2022). Aerosol technology: Properties, behavior, and measurement of airborne particles. John Wiley & Sons.
Höhn, P. (2019). Switching Internal Times and a New Perspective on the ‘Wave Function of the Universe.’ Universe, 5(5), 116. https://doi.org/10.3390/universe5050116
Hut, P., & Rees, M. J. (1992). Constraints on massive black holes as dark matter candidates. Monthly Notices of the Royal Astronomical Society, 259(1), 27 –30. https://doi.org/https://adsabs.harvard.edu/full/1992MNRAS.259P..27H
Ilyas, S. P., Jatmiko, B., Liu, A. N. A. M., & Widodo, W. (2020). Buku Ajar Dinamika Partikel. Media Sains Indonesia.
Inayoshi, K., Visbal, E., & Haiman, Z. (2020). The assembly of the first massive black holes. Annual Review of Astronomy and Astrophysics, 58, 27–97. https://doi.org/10.1146/annurev-astro-120419-014455
Jaya, A. S. (2020). Integrasi Gerak: Transendental-Mekanis. In CV. Rasi Terbit. Rasi Terbit.
Kamphorst, F., Vollebregt, M., Savelsbergh, E., & Joolingen, W. (2019). Students’ preinstructional reasoning with the speed of light in relativistic situations. Physical Review Physics Education Research, 15(2), 20123. https://doi.org/10.1103/PhysRevPhysEducRes.15.020123
Kaur, T., Blair, D., Moschilla, J., Stannard, W., & Zadnik, M. (2017). Teaching Einsteinian physics at schools: Part 1, models and analogies for relativity. Physics Education, 52(6), 65012. https://doi.org/10.48550/arXiv.1704.02058
Khalifa, S., Lan, G., Hassan, M., Seneviratne, A., & Das, S. K. (2017). Harke: Human activity recognition from kinetic energy harvesting data in wearable devices. IEEE Transactions on Mobile Computing, 17(6), 1353–1368. https://doi.org/10.1109/TMC.2017.2761744
Kolb, E. W., & Long, A. J. (2021). Completely dark photons from gravitational particle production during the inflationary era. Journal of High Energy Physics, 3, 1–41. https://doi.org/10.48550/arXiv.2009.03828
Kurki, M. (2020). International Relations and Relational Universe. Oxford University Press.
Kurnia, A. (2021). Konsep Pemahaman Teori Relativitas Khusus Einstein Tentang Pemuaian Waktu. Jurnal TEDC, 15(2), 173–179. https://ejournal.poltektedc.ac.id/index.php/tedc/article/view/488
Lambaga, I. A. (2019). Tinjauan Umum Konsep Fisika Dasar. In Deepublish:Sleman. Sleman: Deepublish.
Latif, M. A., Whalen, D. J., Khochfar, S., Herrington, N. P., & Woods, T. E. (2022). Turbulent cold flows gave birth to the first quasars. Nature, 607(7917), 48–51. https://doi.org/10.1038/s41586-022-04813-y
Liu, C. H., Chen, Z., Tang, J., Xu, J., & Piao, C. (2018). Energy-efficient UAV control for effective and fair communication coverage: A deep reinforcement learning approach. IEEE Journal on Selected Areas in Communications, 36(9), 2059–2070. https://doi.org/10.1109/JSAC.2018.2864373
Miwa, T., Hisakata, R., & Kaneko, H. (2019). Effects of the gravity direction in the environment and the visual polarity and body direction on the perception of object motion. Vision Research, 164, 12–23. https://doi.org/10.1016/j.visres.2019.08.005
Noonan, M. J., Fleming, C. H., Akre, T. S., Drescher-Lehman, J., Gurarie, E., Harrison, A.-L., Kays, R., & Calabrese, J. M. (2019). Scale-insensitive estimation of speed and distance traveled from animal tracking data. Movement Ecology, 7(1), 1–15. https://doi.org/10.1186/s40462-019-0177-1
Paczos, J., Dębski, K., Grochowski, P. T., Smith, A. R., & Dragan, A. (2022). Quantum time dilation in a gravitational field. https://doi.org/10.48550/arXiv.2204.10609
Pandiangan, A. P. B. (2019). Penelitian Tindakan Kelas: Sebagai Upaya Peningkatan Kualitas Pembelajaran, Profesionalisme Guru Dan Kompetensi Belajar Siswa. Deepublish.
Peebles, P. J. E. (2020). The large-scale structure of the universe. Princeton university press.
Pendrill, A.-M., & Eager, D. (2020). Velocity, acceleration, jerk, snap and vibration: Forces in our bodies during a roller coaster ride. Physics Education, 55(6), 65012. https://doi.org/10.1088/1361-6552/aba732
Pons, D. J., Pons, A. D., & Pons, A. J. (2018). Effect of matter distribution on relativistic time dilation. Journal of Modern Physics, 9(3), 500–523. https://doi.org/10.4236/jmp.2018.93035
Putri, R. T. (2022). Relativitas Waktu Dalam Al-Qur’an Dan Relevansinya Terhadap Sains Modern. (Doctoral dissertation, Universitas Islam Negeri Sultan Syarif Kasim Riau).
Qin, C., Tan, Y., & Shao, C. (2021). Test of Einstein Equivalence Principle by frequency comparisons of optical clocks. Physics Letters B, 820, 136471. https://doi.org/10.1016/j.physletb.2021.136471
Qiu, H., Ahmad, F., Bai, F., Gruteser, M., & Govindan, R. (2018). AVR. Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, 81–95. https://doi.org/10.1145/3210240.3210319
Rachman, E. (2021). Finding God (Menemukan Tuhan): Menyusun Kembali Kepingan Sains & Spiritual. Orbit Indonesia.
Roura, A., Schubert, C., Schlippert, D., & Rasel, E. M. (2021). Measuring gravitational time dilation with delocalized quantum superpositions. Physical Review D, 104(8), 84001. https://doi.org/10.1103/PhysRevD.104.084001
Rowcliffe, J. M., Jansen, P. A., Kays, R., Kranstauber, B., & Carbone, C. (2016). Wildlife speed cameras: Measuring animal travel speed and day range using camera traps. Remote Sensing in Ecology and Conservation, 2(2), 84–94. https://doi.org/10.1002/rse2.17
Ruchlin, I., Etienne, Z. B., & Baumgarte, T. W. (2018). SENR/NRPy+: Numerical relativity in singular curvilinear coordinate systems. Physical Review D, 97(6), 64036. https://doi.org/10.1103/PhysRevD.97.064036
Ruggiero, M. L., Ortolan, A., & Speake, C. C. (2022). Galactic dynamics in general relativity: The role of gravitomagnetism. Classical and Quantum Gravity, 39(22), 225015. https://doi.org/10.48550/arXiv.2112.08290
Rummel, M., & Burgess, C. (2020). Constraining fundamental physics with the event horizon telescope. Journal of Cosmology and Astroparticle Physics, 05, 51. https://doi.org/10.1088/1475-7516/2020/05/051
Rybczyk, J. A. (2015). Constant Light Speed–The Greatest Misconception of Modern Science. shorturl.at/sW012
Schutz, B. (2022). A first course in general relativity. Cambridge university press.
Shivalingaswamy, T., & Rashmi, P. (2017). I am the speed of light c, you ‘see’.....! European Journal of Physics Education, 5(1), 51–58. https://doi.org/10.20308/ejpe.v5i1.62
Singal, A. (2022). Bending of electric field lines and photon trajectories in a static gravitational field. Preprints, 2022020293. https://doi.org/10.20944/preprints202202.0293.v1
Sofue, Y. (2020). Gravitational focusing of low-velocity dark matter on the earth’s surface. Galaxies, 8(2), 42. https://doi.org/10.3390/galaxies8020042
Šorli, A. S., & Čelan, Š. (2021). Advances of relativity theory. Physics Essays, 34(2), 201–210. https://doi.org/10.4006/0836-1398-34.2.201
Subhan, M., Rahmawati, E., Lis Suswati, Yus’iran, Y., & Fatimah, F. (2022). Variasi Ketinggian MDPL terhadap Nilai Percepatan Gravitasi Bumi pada Konsep Gerak Jatuh Bebas (GJB) untuk Pendekatan Pembelajaran. Jurnal Pendidikan MIPA, 12(3), 831–837. https://doi.org/10.37630/jpm.v12i3.660
Susetyo, B. (2022). Mengenal Mekanika dan Penerapannya. CV. Mitra Cendekia Media.
Sutanto, A. (2020). Peta Metode Desain. Universitas Tarumanagara.
Sutria, Y., & Nst, M. M. (2022). Fisika Terapan. Media Sains Indonesia.
Tanaka, Y., & Katori, H. (2021). Exploring potential applications of optical lattice clocks in a plate subduction zone. Journal of Geodesy, 95(8), 93. https://doi.org/10.1007/s00190-021-01548-y
Ter-Kazarian, G. (2021). Unique definition of relative speed along the line of sight of a luminous object in a Riemannian space-time. Communications of the Byurakan Astrophysical Observatory, 38–49. https://doi.org/10.52526/25792776-2021.68.1-38
Tessarotto, M., & Cremaschini, C. (2021). The principle of covariance and the Hamiltonian formulation of general relativity. Entropy, 23(2), 215. https://doi.org/10.3390/e23020215
Tino, G., Cacciapuoti, L., Capozziello, S., Lambiase, G., & Sorrentino, F. (2020). Precision gravity tests and the Einstein equivalence principle. Progress in Particle and Nuclear Physics, 112(103772). https://doi.org/10.48550/arXiv.2002.02907
Wilujeng, I. (2021). Fisika Modern Teori, Soal, dan Pembahasan. Deepublish.
Xia, C., Zhang, A., Wang, H., & Zhang, B. (2019). Modeling urban growth in a metropolitan area based on bidirectional flows, an improved gravitational field model, and partitioned cellular automata. International Journal of Geographical Information Science, 33(5), 877–899. https://doi.org/10.1080/13658816.2018.1562067
Yani, M., Siregar, M., & Suroso, B. (2019). Strength of polymeric foam composite reinforced oil palm empty fruit bunch fiber subjected to impact load (Vol. 674, Issue 1, p. 12065). https://doi.org/10.1088/1757-899X/674/1/012065
Zendroto, F. (2019). Analisis Miskonsepsi Fisika Siswa pada Materi Mekanika dengan Menggunakan Four Tier Multiple Choice Diagnostic Test Kelas XI di SMA Negeri Sekota Medan TP 2018/2019. http://repository.uhn.ac.id/handle/123456789/3089
Zotos, E. E., Chen, W., Abouelmagd, E. I., & Han, H. (2020). Basins of convergence of equilibrium points in the restricted three-body problem with modified gravitational potential. Chaos, Solitons & Fractals, 134, 109704. https://doi.org/10.1016/j.chaos.2020.109704
Zschocke, S. (2022). Time delay in the quadrupole field of a body at rest in the 2PN approximation. Physical Review D, 106(10), 104052. https://doi.org/10.1103/PhysRevD.106.104052
elled as an Inverted Quadruple Pendulum Dynamical System. 2.
Albrecht, A., & Magueijo, J. (1999). Time varying speed of light as a solution to cosmological puzzles. Physical Review D, 59(4), 043516.
Apuke, O. D. (2017). Quantitative research methods: A synopsis approach. Kuwait Chapter of Arabian Journal of Business and Management Review, 33(5471), 1–8.
Babler, T. G., & Dannemiller, J. L. (1993). Role of image acceleration in judging landing location of free-falling projectiles. Journal of Experimental Psychology: Human Perception and Performance, 19(1), 15.
Bacchini, F., Ripperda, B., Chen, A. Y., & Sironi, L. (2018). Generalized, energy-conserving numerical simulations of particles in general relativity. I. Time-like and null geodesics. The Astrophysical Journal Supplement Series, 237(1), 6.
Born, M. (1962). Einstein’s theory of relativity. Courier Corporation.
Bravo, T., Rätzel, D., & Fuentes, I. (2022). Gravitational time dilation in extended quantum systems: The case of light clocks in Schwarzschild spacetime. ArXiv Preprint ArXiv:2204.07869.
Brown, J. M. (2018). The Fundamental Particles of Physics. Basic Research Press.
Chael, A., Johnson, M. D., & Lupsasca, A. (2021). Observing the inner shadow of a black hole: A direct view of the event horizon. The Astrophysical Journal, 918(1), 6.
Champagne, A. B., Klopfer, L. E., & Anderson, J. H. (1980). Factors influencing the learning of classical mechanics. American Journal of Physics, 48(12), 1074–1079.
Clancey, W. J. (2014). The frame of reference problem in the design of intelligent machines. In Architectures for intelligence (pp. 371–438). Psychology Press.
Coles, P. (2001). Einstein, Eddington and the 1919 eclipse. 252, 21.
Colmenero, N. P., Córdoba, J. V. A., & Fullana i Alfonso, M. J. (2021). Relativistic positioning: Including the influence of the gravitational action of the sun and the moon and the earth’s oblateness on galileo satellites. Astrophysics and Space Science, 366(7), 1–19.
Dokuchaev, V. (2019). To see the invisible: Image of the event horizon within the black hole shadow. International Journal of Modern Physics D, 28(13), 1941005.
Einstein, A. (2003). The meaning of relativity. Routledge.
Feng, J. Q. (2020). Rotating Disk Galaxies without Dark Matter Based on Scientific Reasoning. Galaxies, 8(1), 9.
Feynman, R. P., Morinigo, F. B., Wagner, W. G., Hatfield, B., Preskill, J., & Thorne, K. S. (2018). Feynman lectures on gravitation. CRC Press.
Fiziev, P. P. (2019). The Era of Gravitational Astronomy and Gravitational Field of Non-Rotating Single Point Particle in General Relativity. Physics of Particles and Nuclei, 50(6), 944–972.
French, A. P. (2017). Special relativity. CRC Press.
Fulton, T., Rohrlich, F., & Witten, L. (1962). Conformal invariance in physics. Reviews of Modern Physics, 34(3), 442.
Gair, J. R., Vallisneri, M., Larson, S. L., & Baker, J. G. (2013). Testing general relativity with low-frequency, space-based gravitational-wave detectors. Living Reviews in Relativity, 16(1), 1–109.
Galili, I. (2001). Weight versus gravitational force: Historical and educational perspectives. International Journal of Science Education, 23(10), 1073–1093.
Gan, Q., Wang, P., Wu, H., & Yang, H. (2021). Photon spheres and spherical accretion image of a hairy black hole. Physical Review D, 104(2), 024003.
Giacomini, F., Castro-Ruiz, E., & Brukner, Č. (2019). Quantum mechanics and the covariance of physical laws in quantum reference frames. Nature Communications, 10(1), 1–13.
HenokTadesse, E. E., & Debrezeit, P. (2018). A Theoretical Framework of Absolute/Relative Motion and the Speed of Light.
Hinds, W. C., & Zhu, Y. (2022). Aerosol technology: Properties, behavior, and measurement of airborne particles. John Wiley & Sons.
Hussey, T., & Smith, P. (2002). The trouble with learning outcomes. Active Learning in Higher Education, 3(3), 220–233.
Hut, P., & Rees, M. J. (1992). Constraints on massive black holes as dark matter candidates. Monthly Notices of the Royal Astronomical Society, 259(1), 27P-30P.
Inayoshi, K., Visbal, E., & Haiman, Z. (2020). The assembly of the first massive black holes. Annual Review of Astronomy and Astrophysics, 58, 27–97.
Kaur, T., Blair, D., Moschilla, J., Stannard, W., & Zadnik, M. (2017). Teaching Einsteinian physics at schools: Part 1, models and analogies for relativity. Physics Education, 52(6), 065012.
Kavanagh, C., & Sneider, C. (2007). Learning about gravity I. Free fall: A guide for teachers and curriculum developers. Astronomy Education Review, 5(2), 21–52.
Khalifa, S., Lan, G., Hassan, M., Seneviratne, A., & Das, S. K. (2017). Harke: Human activity recognition from kinetic energy harvesting data in wearable devices. IEEE Transactions on Mobile Computing, 17(6), 1353–1368.
Latif, M. A., Whalen, D. J., Khochfar, S., Herrington, N. P., & Woods, T. E. (2022). Turbulent cold flows gave birth to the first quasars. Nature, 607(7917), 48–51.
Liu, C. H., Chen, Z., Tang, J., Xu, J., & Piao, C. (2018). Energy-efficient UAV control for effective and fair communication coverage: A deep reinforcement learning approach. IEEE Journal on Selected Areas in Communications, 36(9), 2059–2070.
Nottale, L. (1993). Fractal space-time and microphysics: Towards a theory of scale relativity. World Scientific.
Paczos, J., Dębski, K., Grochowski, P. T., Smith, A. R., & Dragan, A. (2022). Quantum time dilation in a gravitational field. ArXiv Preprint ArXiv:2204.10609.
Pons, D. J., Pons, A. D., & Pons, A. J. (2018). Effect of matter distribution on relativistic time dilation. Journal of Modern Physics, 9(3), 500–523.
Qiu, H., Ahmad, F., Bai, F., Gruteser, M., & Govindan, R. (2018). Avr: Augmented vehicular reality. 81–95.
Rowcliffe, J. M., Jansen, P. A., Kays, R., Kranstauber, B., & Carbone, C. (2016). Wildlife speed cameras: Measuring animal travel speed and day range using camera traps. Remote Sensing in Ecology and Conservation, 2(2), 84–94.
Ruchlin, I., Etienne, Z. B., & Baumgarte, T. W. (2018). SENR/NRPy+: Numerical relativity in singular curvilinear coordinate systems. Physical Review D, 97(6), 064036.
Rueda, A., & Haisch, B. (2005). Gravity and the quantum vacuum inertia hypothesis. Annalen Der Physik, 517(8), 479–498.
Ruggiero, M. L., Ortolan, A., & Speake, C. C. (2022). Galactic dynamics in general relativity: The role of gravitomagnetism. Classical and Quantum Gravity, 39(22), 225015.
Rummel, M., & Burgess, C. (2020). Constraining fundamental physics with the event horizon telescope. Journal of Cosmology and Astroparticle Physics, 2020(05), 051.
Rybczyk, J. A. (2015). Constant Light Speed–The Greatest Misconception of Modern Science.
Sechrest, L., & Sidani, S. (1995). Quantitative and qualitative methods: Is There an Alternative? Evaluation and Program Planning, 18(1), 77–87.
Shivalingaswamy, T., & Rashmi, P. (2017). I am the speed of light c, you ‘see’…..! European Journal of Physics Education, 5(1), 51–58.
Singal, A. (2022). Bending of electric field lines and photon trajectories in a static gravitational field.
Šorli, A. S., & Čelan, Š. (2021). Advances of relativity theory. Physics Essays, 34(2), 201–210.
Tessarotto, M., & Cremaschini, C. (2021). The principle of covariance and the Hamiltonian formulation of general relativity. Entropy, 23(2), 215.
Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts of rate. The Development of Multiplicative Reasoning in the Learning of Mathematics, 179–234.
Tino, G., Cacciapuoti, L., Capozziello, S., Lambiase, G., & Sorrentino, F. (2020). Precision gravity tests and the Einstein equivalence principle. Progress in Particle and Nuclear Physics, 112, 103772.
Yani, M., Siregar, M., & Suroso, B. (2019). Strength of polymeric foam composite reinforced oil palm empty fruit bunch fiber subjected to impact load. 674(1), 012065.
Zotos, E. E., Chen, W., Abouelmagd, E. I., & Han, H. (2020). Basins of convergence of equilibrium points in the restricted three-body problem with modified gravitational potential. Chaos, Solitons & Fractals, 134, 109704.
Zschocke, S. (2022). Time delay in the quadrupole field of a body at rest in the 2PN approximation. Physical Review D, 106(10), 104052.
Author Biographies
Lulut Alfaris, Department of marine technology, Pangandaran marine and fisheries Polytechnic
Department of marine engineering, post-graduate program, Institut Teknologi sepuluh november, indonesian, and lecturer at the Department of marine technology, Pangandaran marine and fisheries Polytechnic.
Ruben Cornelius Siagian, Universitas Negeri Medan
Eko Pramesti Sumarto, SMA Muhammadiyah 3 Genteng Banyuwangi
Senior science math teacher at Muhammadiyah 3 Genteng Banyuwangi High School, and graduate student at Institut Teknologi Sepuluh November, Indonesia
License
Copyright (c) 2023 Ruben Cornelius Siagian, Lulut Alfaris, Eko Pramesti Sumarto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).