Correlation of Microplastic Size Distribution and Water Quality Parameters in the Upstream Brantas River

Authors

Luthfia Ayu Dhea , Andi Kurniawan , Siti Mariyah Ulfa , Karimah Karimah

DOI:

10.29303/jppipa.v9i2.2777

Published:

2023-02-28

Issue:

Vol. 9 No. 2 (2023): February

Keywords:

Microplastic, Polymer, Size distribution, Water quality parameters

Research Articles

Downloads

How to Cite

Dhea, L. A., Kurniawan, A. ., Ulfa, S. M. ., & Karimah, K. (2023). Correlation of Microplastic Size Distribution and Water Quality Parameters in the Upstream Brantas River. Jurnal Penelitian Pendidikan IPA, 9(2), 520–526. https://doi.org/10.29303/jppipa.v9i2.2777

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Microplastics are contaminants resulting from plastic fragmentation with a size <5 mm. The spread of microplastics threatens the imbalance of the environment and organisms in the waters. So it is necessary to know the abundance, size distribution, and correlation between microplastic abundance and water quality parameters. This study used a quantitative descriptive method with purposive sampling. The study parameters included total microplastic abundance, microplastic abundance based on size characteristics, type of microplastic polymer, water quality parameters, and correlation between microplastic abundance and water quality. Calculating the total abundance of microplastics obtained a value range of 3311.11 – 18111.11 particles/m3. The results of the microplastic size distribution got the highest abundance percentage value in the class with a size <50 µm, which was 84.39%. There were eight types of polymers identified, including Polyethylene (PE), Polyvinyl chloride (PVC), Polypropylene (PP), High-density polyethylene (HDPE), Low-density polyethylene (LDPE, Polyethylene terephthalate (PET), Polycarbonate (PC), and Nylon. Water quality measurements obtained temperature range of 17.37-26.63 °C, pH value range of 6.66-8.51, current velocity value range of 0.13-0.8 m/s, DO value range of 4, 32-6.103 ppm, BOD value range of 4.69-6.07 ppm and TSS value range 0.005-0.019 ppm. Correlation analysis using the Canonical Correlation Analysis (CCA) statistical method. The study showed that water quality parameters such as temperature, current velocity, and DO have a high score of 0.95, 0.83, and 0.8.

References

Abidin, A. Z., Susanto, G., Sastra, N. M. T., & Puspasari, T. (2018). Sintesis dan karakterisasi polimer superabsorban dari akrilamida. Jurnal Teknik Kimia Indonesia, 11(2), 84–100. https://doi.org/10.5614/jtki.2012.11.2.5

Aji, N. R., Wibowo, E. A. P., Ujiningtyas, R., Wirasti, H., & Widiarti, N. (2016). Sintesis komposit TiO2-bentonit dan aplikasinya untuk penurunan BOD dan COD Air Embung UNNES. Jurnal Kimia VALENSI, 2(2), 114–119. https://doi.org/10.15408/jkv.v0i0.3620

Aragaw, T. A. (2020). Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Marine Pollution Bulletin, 159(11151), 1–7. https://doi.org/10.1016/j.marpolbul.2020.111517.

Arsad, S., Putra, K. T., Latifah, N., Kadim, M. K., & Musa, M. (2021). Epiphytic microalgae community as aquatic bioindicator in Brantas River, East Java, Indonesia. Biodiversitas Journal of Biological Diversity, 22(7), 2961–2971. https://doi.org/10.13057/biodiv/d220749

Ayuingtyas, W. C., Yona, D., Julinda, S. H., & Iranawati, F. (2019). Kelimpahan Mikroplastik Pada Perairan Di Banyuurip, Gresik, Jawa Timur. JFMR (Journal of Fisheries and Marine Research, 3(1), 41–45. https://doi.org/10.21776/ub.jfmr.2019.003.01.5

Besseling, E., Quik, J. T., Sun, M., & Koelmans, A. A. (2017). Fate of nano-and microplastic in freshwater systems: A modeling study. Environmental Pollution, 220, 540–548. https://doi.org/10.1016/j.envpol.2016.10.001

Buwono, N. R., Risjani, Y., & Soegianto, A. (2021). Distribution of microplastic in relation to water quality parameters in the Brantas River, East Java, Indonesia. Environmental Technology & Innovation, 24(101915), 1–10. https://doi.org/10.1016/j.eti.2021.101915.

Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley, S., & Amato, S. (2013). Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin, 77(1–2), 177–182. https://doi.org/10.1016/j.marpolbul.2013.10.007

Estahbanati, S., & Fahrenfeld, N. L. (2016). Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere, 162, 277–284. https://doi.org/10.1016/j.chemosphere.2016.07.083

Fitria, S. N., Anggraeni, V., Abida, I. W., & Junaedi, A. S. (2021). Identifikasi Mikroplastik pada Gastropoda dan Udang di Sungai Brantas. Environmental Pollution Journal, 1(2), 159–166. https://journalecoton.id/index.php/epj

Fitriyah, A., Syafrudin, S., & Sudarno, S. (2022). Identifikasi Karakteristik Fisik Mikroplastik di Sungai Kalimas, Surabaya, Jawa Timur. Jurnal Kesehatan Lingkungan Indonesia, 21(3), 350–357. https://doi.org/10.14710/jkli.21.3.350-357.

Gunawan, G., Effendi, H., & Warsiki, E. (2021). Cemaran Mikroplastik pada Ikan Pindang dan Potensi Bahayanya terhadap Kesehatan Manusia, Studi Kasus di Bogor. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan, 16(2), 105–119. https://doi.org/10.15578/jpbkp.v16i2.772

Guzzetti, E., Sureda, A., Tejada, S., & Faggio, C. (2018). Microplastic in marine organism: Environmental and toxicological effects. Environmental Toxicology and Pharmacology, 64, 164–171. https://doi.org/10.1016/j.etap.2018.10.009.

Klein, S., Dimzon, I. K., Eubeler, J., & Knepper, T. P. (2018). Analysis, occurrence, and degradation of microplastics in the aqueous environment. In Freshwater microplastics (pp. 51–67). Springer. https://doi.org/10.1007/978-3-319-61615-5_3

Kooi, M., Besseling, E., Kroeze, C., Wezel, A. P. V, & Koelmans, A. A. (2018). Modeling the fate and transport of plastic debris in freshwaters: review and guidance. Freshwater Microplastics, 58, 125–152. https://doi.org/10.1007/978-3-319-61615-5_14

Kumar, R., Sharma, P., Verma, A., Jha, P. K., Singh, P., Gupta, P. K., Chandra, R., & Prasad, P. V. (2021). Effect of physical characteristics and hydrodynamic conditions on transport and deposition of microplastics in riverine ecosystem. Water, 13(19), 2710. https://doi.org/10.3390/w13192710.

Laila, Q. N., Purnomo, P. W., & Jati, O. E. (2020). Kelimpahan Mikroplastik Pada Sedimen Di Desa Mangunharjo, Kecamatan Tugu, Kota Semarang. Jurnal Pasir Laut, 4(1), 28–35. https://ejournal.undip.ac.id/index.php/pasirlaut

Lin, Z., Jin, T., Zou, T., Xu, L., Xi, B., Xu, D., He, J., Xiong, L., Tang, C., Peng, J., Zhou, Y., & Fei, J. (2022). Current progress on plastic/microplastic degradation: Fact influences and mechanism. Environmental Pollution, 119159, 1–11. https://doi.org/10.1016/j.envpol.2022.119159.

Makrima, D. B., Suprijanto, J., & Yulianto, B. (2022). Mikroplastik pada Tentakel dan Pencernaan Cumi–Cumi dari TPI Tambak Lorok. Journal of Marine Research, 11(3), 467–474. https://doi.org/10.14710/jmr.v11i3.35081

Marlina, N., Hudori, H., & Hafidh, R. (2017). Pengaruh Kekasaran Saluran dan Suhu Air Sungai pada Parameter Kualitas Air COD, TSS di Sungai Winongo Menggunakan Software QUAL2Kw. Jurnal Sains & Teknologi Lingkungan, 9(2), 122–133. https://doi.org/10.20885/jstl.vol9.iss2.art6

Musfirah, B., I., A., N., & Sari, S. N. (2022). Metode penelitian kuantitatif. Insan Cendekia Mandiri.

Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science and Technology, 4(1), 97. https://doi.org/10.17509/ijost.v4i1.15806

Nelms, S. E., Duncan, E. M., Patel, S., Badola, R., Bhola, S., Chakma, S., Chowdhury, G. W., Godley, B. J., Haque, A. B., Jhonson, J. A., Khatoon, H., Kumar, S., Napper, I. E., Niloy, M. N. H., Akter, T., Badola, S., Dev, A., Rawat, S., Santillo, D., … Koldewey, H. (2021). Riverine plastic pollution from fisheries: Insights from the Ganges River system. Science of The Total Environment, 756(14330), 2–13. https://doi.org/10.1016/j.scitotenv.2020.143305.

Pan, M., Li, H., Han, X., Quan, G., Ma, W., Guo, Q., Li, X., Yang, B., Ding, C., Chen, Y., Yun, T., Qin, J., & Jiang, S. (2023). Effect of hydrodynamics on the transformation of nitrogen in river water by regulating the mass transfer performance of dissolved oxygen in biofilm. Chemosphere, 312(1), 1–10. https://doi.org/10.1016/j.chemosphere.2022.137013.

Pippo, F. D., Venezia, C., Sighicelli, M., Pietrelli, L., Vito, S., Nuglio, S., & Rossetti, S. (2020). Microplastic-associated biofilms in lentic Italian ecosystems. Water Research, 187, 116429. https://doi.org/10.1016/j.watres.2020.116429

Pohan, D. A. S., Budiyono, B., & Syafrudin, S. (2016). Analisis kualitas air sungai guna menentukan peruntukan ditinjau dari aspek lingkungan. Jurnal Ilmu Lingkungan, 14(2), 63–71. https://doi.org/10.14710/jil.14.2.63-71

Purwiyanto, A. I. S., Suteja, Y., Trisno, Ningrum, P. S., Putri, W. A. E., Rozirwan, Agustriani, F., Fauziyah, Cordova, M. R., & Koropitan, A. F. (2020). Concentration and adsorption of Pb and Cu in microplastics: Case study in aquatic environment. Marine Pollution Bulletin, 158, 111380. https://doi.org/10.1016/j.marpolbul.2020.111380

Reichel, J., Graßmann, J., Letzel, T., & Drewes, J. E. (2020). Systematic Development of a Simultaneous Determination of Plastic Particle Identity and Adsorbed Organic Compounds by Thermodesorption–Pyrolysis GC/MS (TD-Pyr-GC/MS. Molecules, 25(21), 4985. https://doi.org/10.3390/molecules25214985

Serra, M., Psarra, S., & O’Brien, J. (2018). Social and physical characterization of urban contexts: Techniques and methods for quantification, classification and purposive sampling. Urban Planning, 3(1), 58–74. https://doi.org/10.17645/up.v3i1.1269

Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Rani, M., Lee, J., & Shim, W. J. (2015). A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Marine Pollution Bulletin, 93(1–2), 202–209. https://doi.org/10.1016/j.marpolbul.2015.01.015

Sugianti, Y., & Astuti, L. P. (2018). Respon Oksigen Terlarut Terhadap Pencemaran dan Pengaruhnya Terhadap Keberadaan Sumber Daya Ikan di Sungai Citarum. Jurnal Teknologi Lingkungan, 19(2), 203. http://download.garuda.kemdikbud.go.id

Sulistyowati, L., Riani, E., & Cordova, M. R. (2022). The occurrence and abundance of microplastics in surface water of the midstream and downstream of the Cisadane River, Indonesia. Chemosphere, 291(133071), 1–9. https://doi.org/10.1016/j.chemosphere.2021.133071.

Yudhantari, C. I., Hendrawan, I. G., & Puspitha, N. L. P. R. (2019). Kandungan mikroplastik pada saluran pencernaan ikan lemuru protolan (Sardinella lemuru) hasil tangkapan di selat Bali. Journal of Marine Research and Technology, 2(2), 48–52. https://ojs.unud.ac.id/index.php/JMRT

Zhang, K., Xiong, X., Hu, H., Wu, C., Bi, Y., Wu, Y., Zhou, B., Lam, P. K., & Liu, J. (2017). Occurrence and characteristics of microplastic pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environmental Science & Technology, 51(7), 3794–3801. https://doi.org/10.1021/acs.est.7b00369.

Zhuang, X., Yang, Z., & Cordes, D. (2020). A technical review of canonical correlation analysis for neuroscience applications. Human Brain Mapping, 41(13), 3807–3833. https://doi.org/10.1002/hbm.25090

Author Biographies

Luthfia Ayu Dhea, Brawijaya University

Andi Kurniawan, University Brawijaya

Siti Mariyah Ulfa, Brawijaya University

Karimah Karimah, Brawijaya University

License

Copyright (c) 2023 Luthfia Ayu Dhea

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).