Utilization Of Rice Waste Water on Biomass and Carotenoid Pigment Arthrospira platensis
DOI:
10.29303/jppipa.v9i2.2795Published:
2023-02-28Issue:
Vol. 9 No. 2 (2023): FebruaryKeywords:
Arthrospira platensis, Biomass, Carotenoids, Culture Media, Rice Washing, WastewaterResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Arthrospira platensis culture requires macro and micronutrients. The nutrients needed by Arthrospira platensis according to Agustina and Herman (2021) are macronutrients consisting of nitrogen (N), phosphorus (P), potassium (K), sulfur (S), iron (Fe), magnesium (Mg), silicon (Si), and calcium (Ca). Micronutrients consist of zinc (Zn), cobalt (Co), molybdenum (Mo), boron (B), and copper (Cu). Rice-washing wastewater contains macro and micronutrients needed for the growth of Arthrospira platensis. Almost all of the nutrients needed by Arthrospira platensis are found in the wastewater, except for Co. Previous studies have shown that rice-washing wastewater can be used for Arthrospira platensis culture, but the growth rate is still higher than Walne fertilizer 0.5 ml/L. Zarrouk fertilizer as a standard growth medium for Arthrospira platensis shows that this fertilizer has better growth results than Urea and NPK fertilizers. This research was conducted to determine the effect of rice-washing wastewater as a nutrient source for culture media or a combination of Zarrouk fertilizer and rice-washing wastewater so that it can be used to increase the biomass and carotenoid pigments of Arthrospira platensis. This research used a Factorial Completely Randomized Design (CRD) with 12 treatments and 3 replications. Arthrospira platensis quality test was carried out by testing dry biomass and carotenoid content. The ANOVA test results showed that this study's treatment had a significant effect on the carotenoid content and biomass of Arthrospira platensis. The treatment with the highest effect of biomass and carotenoids was obtained in the treatment of 1.5 ml/L of rice-washing wastewater
References
Agustina, S., dan Herman, S. (2016). Potensi mikroalga sebagai bahan kimia ADI. Bbkk. Kemenperin.Go.Id, 3(1). Retrieved from http://bbkk.kemenperin.go.id/wp-content/uploads/portal/portal2016.pdf#page=19
Al Mahrouqi, H., Vega, J., Dobretsov, S., dan Abdala DÃaz, R. T. (2022). The Effect of Medium Concentration and Nitrogen Source on the Productivity and Biochemical Composition of Arthrospira platensis. Biology Bulletin, 49(2), 75-84. https://doi.org/10.1134/S1062359022020108
Buwono, N. R., dan Nurhasanah, R. Q. (2018). Study of Spirulina sp. Population Growth in The Different Culture Scale. Jurnal Ilmiah Perikanan dan Kelautan, 10(1), 26-33. https://doi.org/10.20473/jipk.v10i1.8202
Chu, R., Hu, D., Zhu, L., Li, S., Yin, Z., & Yu, Y. (2022). Recycling spent water from microalgae harvesting by fungal pellets to re-cultivate Chlorella vulgaris under different nutrient loads for biodiesel production. Bioresource Technology, 344, 126227. https://doi.org/10.1016/j.biortech.2021.126227
El Baky, H. H. A., El Baroty, G. S., dan Mostafa, E. M. (2020). Optimization growth of Spirulina (Arthrospira) platensis in photobioreactor under varied Nitrogen concentration for maximized biomass, carotenoids and lipid contents. Recent Patents on Food, Nutrition and Agriculture, 11(1), 40-48. https://doi.org/10.2174/2212798410666181227125229
Gopi, V. (2021). Potential of Cyanobacterium Spirulina platensis for Eutrophic Water Restoration (Doctoral dissertation, Université d'Ottawa/University of Ottawa). http://dx.doi.org/10.20381/ruor-26066
Guldhe, A., Ansari, F. A., Singh, P., & Bux, F. (2017). Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecological engineering, 99, 47-53. https://doi.org/10.1016/j.ecoleng.2016.11.013
Hartami, P., Mauliyani, M., Erniati, E., Masyithah, P., Kurniawan, R., Suhaila, N., ... dan Rusydi, R. (2022). Effectiveness of Spirulina platensis as a bioremediator candidate for vaname shrimp (Litopenaeus vannamei) wastewater. Acta Aquatica: Aquatic Sciences Journal, 9(1), 54-59. https://doi.org/10.29103/aa.v9i1.6992
Janssen, M., Kuijpers, T. C., Veldhoen, B., Ternbach, M. B., Tramper, J., Mur, L. R., dan Wijffels, R. H. (1999). Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13–87 s. In Progress in Industrial Microbiology, 35, 323-333. https://doi.org/10.1016/S0079-6352(99)80124-6
Kaewdam, S., Jaturonglumlert, S., Varith, J., Nitatwichit, C., dan Narkprasom, K. (2019). Kinetic Models For Phycocyanin Production By Fed Batch Cultivation Of The Spirulina platensis. Geomate Journal, 17(61), 187-194. https://doi.org/10.21660/2019.61.89205
Lowry, O. H. (1951). Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
Markou, G., Eliopoulos, C., Argyri, A., dan Arapoglou, D. (2021). Production of Arthrospira ( Spirulina) platensis Enriched in β-Glucans through Phosphorus Limitation. Applied Sciences, 11(17), 8121. https://doi.org/10.3390/app11178121
Mauretsa, Z., Zulfahmi, I., dan Rahmawati, L. (2019). Fitoremediasi Limbah Budidaya Ikan Nila, Oreochromis niloticus (Linnaeus, 1758) Menggunakan Spirulina sp. In Prosiding SEMDI-UNAYA (Seminar Nasional Multi Disiplin Ilmu UNAYA), 3. Retrieved from http://jurnal.abulyatama.ac.id/index.php/semdiunaya
Mousavi, M., Mehrzad, J., Najafi, M. F., Zhiani, R., dan Shamsian, S. A. A. (2022). Nitrate and ammonia: two key nitrogen sources for biomass and phycocyanin production by Arthrospira (Spirulina) platensis. Journal of Applied Phycology, 34(5), 2271-2281. https://doi.org/10.1007/s10811-021-02664-0
Mulokozi, D. P., Mtolera, M. S., dan Mmochi, A. J. (2019). Biomass production and growth performance of Momela Lake’s Spirulina (Arthrospira fusiformis) cultured under urea and N: P: K fertilizers as cheaper nitrogen sources. International Journal of Biological and Chemical Sciences, 13(2), 861-869. https://doi.org/10.4314/ijbcs.v13i2.23
Nabayi, A., Teh, C. B. S., Tan, A. K. Z., & Tan, N. P. (2022). Consecutive Application Effects of Washed Rice Water on Plant Growth, Soil Chemical Properties, Nutrient Leaching, and Soil Bacterial Population on Three Different Soil Textures over Three Planting Cycles. Agronomy, 12(9), 2220. https://doi.org/10.3390/agronomy12092220
Nogueira, S. M. S., Souza Junior, J., Maia, H. D., Saboya, J. P. S., dan Farias, W. R. L. (2018). Use of Spirulina platensis in treatment of fish farming wastewater. Revista Ciência Agronômica, 49, 599-606. https://doi.org/10.5935/1806-6690.20180068
Paquin, M., & Cosgrove, C. (2016). The United Nations World Water Development Report 2016: Water and jobs. UNESCO for UN-Water. Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000243938
Park, J. (2013). Environment and health: An overview of current trends at WHO and OECD. Journal of Environmental Health Sciences, 39(4), 299-311. https://doi.org/10.5668/JEHS.2013.39.4.299
Prabhath, G. P. W. A., Shukla, S. P., Srivastava, P. P., Kumar, K., Sawant, P. B., Verma, A. K., ... dan Nuwansi, K. K. T. (2022). Downstream processing of biomass produced in aquaculture wastewater for valuable pigments from the cyanobacterium Spirulina (Arthrospira) platensis: a green and sustainable approach. Aquaculture International, 1-26. https://doi.org/10.1007/s10499-022-00949-w
Salunke, M. A., Wakure, B. S., dan Wakte, P. S. (2021). Neoteric Approaches for Extraction of Bioactives from Marine Macroflora. International Journal of Research in Pharmaceutical Sciences, 12(4), 2507-2518. http://dx.doi.org/10.26452/ijrps.v12i4.4896
Soni, R. A., Sudhakar, K., dan Rana, R. S. (2019). Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports, 5, 327-336. https://doi.org/10.1016/j.egyr.2019.02.009
Sow, S. and Ranjan, S. (2021). Cultivation of Spirulina: An innovative approach to boost up agricultural productivity. The Pharma Innovation. 10(3), 799-813. https://doi.org/10.22271/tpi.2021.v10.i3k.5889
Utomo, A. N. S., Julyantoro, P. G. S., dan Dewi, A. P. W. K. (2020). Pengaruh Penambahan Air Cucian Beras terhadap Laju Pertumbuhan Spirulina sp. Current Trends in Aquatic Science, 3(1), 15-22. Retrieved from https://ojs.unud.ac.id/index.php/CTAS/article/view/51260
Vo, T., dan Tran, D. (2014). Carotene and antioxidant capacity of Dunaliella salina strains. World Journal of Nutrition and Health, 2(2), 21-23. Retrieved from http://www.sciepub.com/JNH/abstract/2307
Author Biographies
Anisa Millah Taqiyyah, Brawijaya University
Yenny Risjani, Brawijaya University
Asep Awaludin Prihanto, Brawijaya University
Gilang Drajat Maulana, Brawijaya University
Karimah Karimah, Brawijaya University
License
Copyright (c) 2023 Anisa Millah Taqiyyah
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).