Vol. 9 No. 7 (2023): July
Open Access
Peer Reviewed

Synthesis, Characterization and Determination of Weight Poly Molecule (Lactic acid)

Authors

Saefuddin , Peter Davey

DOI:

10.29303/jppipa.v9i7.2900

Published:

2023-07-25

Downloads

Abstract

Experiments have been successfully carried out to react with lactic acid and 1,4-butanediol, tin (II) chloride dihydrate (SnCl2.2H2O), chloroform, methanol, liquid nitrogen, nitrogen gas, and silicone oil at various concentrations. The objective exists to synthesize polylactic acid by forming polylactic acid diol (PLA-OH) via a direct polycondensation reaction of lactic acid and 1,4-butanediol in a glass reactor following a specific reaction scheme. Synthesis was carried out using different amounts of reagents according to the predetermined mole ratio of lactic acid (AL) and 1,4-butanediol (BD). The FTIR, 1H NMR, and GPC analyses that characterized the PLA-OH revealed its physicochemical characteristics. The FTIR and 1H NMR characterization results show new absorption peaks and a shift in PLA-OH absorption peaks. It indicates that a bond has been formed from the reaction between lactic acid molecules and 1,4-butanediol to produce PLA-OH. From the spectrum analysis, it can be concluded that the structure of the synthesized PLA-OH has four different proton environments (there are four different peaks in the spectrum). The peaks originate from the protons in methylene (-OCH2CH2CH2CH2O), internal methine (-O-CH-), and methine at the end of the PLA-OH chain, as well as proton peaks in methyl (H3C-). The characterization results with GPC showed that the tendency to increase Mn PLA was directly proportional to the increasing amount of lactic acid in the PLA chain

Keywords:

Biodegradable polymer Molecular weight POLY (lactic acid) Polycondensation

References

Ãbrahám, Ã., Gyulai, G., Tóth, T., Szvoboda, B., Mihály, J., Szabó, Ã., & Kiss, É. (2022). Improvement of the drug encapsulation into biodegradable polyester nanocarriers by blending of poly(lactic-co-glycolic acid) and polycaprolactone. Express Polymer Letters, 16(9), 960–977. https://doi.org/10.3144/expresspolymlett.2022.70

Bher, A., Mayekar, P. C., Auras, R. A., & Schvezov, C. E. (2022). Biodegradation of Biodegradable Polymers in Mesophilic Aerobic Environments. International Journal of Molecular Sciences, 23(20), 12165. https://doi.org/10.3390/ijms232012165

Campana, R., Sabatini, L., Giorgi, L., Pettinari, G., Valentini, L., & Gobbi, P. (2022). A Multidisciplinary Approach in Examining the Susceptibility to Microbial Attack of Polyacrylic and Polyurethane Resins Used in Art Restoration. International Journal of Molecular Sciences, 23(19), 11725. https://doi.org/10.3390/ijms231911725

Chaisit, T., Sumpavapol, P., Jantanasakulwong, K., & Kittikorn, T. (2022). Preparation and characterization of antimicrobial laminated films based on poly(lactic acid)/chitosan via a lamination technique. Express Polymer Letters, 16(10), 1052–1064. https://doi.org/10.3144/expresspolymlett.2022.77

Creswell, R. C. (1982). Analisis Spektrum Senyawa Organik. ITB Press.

Damadzadeh, B., Jabari, H., Skrifvars, M., Airola, K., Moritz, N., & Vallittu, P. K. (2010). Effect of ceramic filler content on the mechanical and thermal behaviour of poly-l-lactic acid and poly-l-lactic-co-glycolic acid composites for medical applications. Journal of Materials Science: Materials in Medicine, 21(9), 2523–2531. https://doi.org/10.1007/s10856-010-4110-9

Djouonkep, L., Tchameni, A., Selabi, N., Tamo, A., Doench, I., Cheng, Z., Gauthier, M., Xie, B., & Osorio-Madrazo, A. (2022). Bio-Based Degradable Poly(ether-ester)s from Melt-Polymerization of Aromatic Ester and Ether Diols. International Journal of Molecular Sciences, 23(16), 8967. https://doi.org/10.3390/ijms23168967

Garlotta, D. (2001). A literature review of poly(lactic acid). Journal of Polymers and the Environment, 9(2), 63–84. https://doi.org/10.1023/a:1020200822435

Gkountela, C. I., & Vouyiouka, S. N. (2022). Enzymatic Polymerization as a Green Approach to Synthesizing Bio-Based Polyesters. Macromole, 2(1), 30–57. https://doi.org/10.3390/macromole2010003

Hiltunen, K., Tuominen, J., & Seppälä, J. V. (1998). Hydrolysis of lactic acid based poly(ester-urethane)s. Polymer International, 47(2), 186–192. https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2<186::AID-PI47>3.0.CO;2-E

Huskić, M., & Žigon, M. (2004). The influence of side-chain and main-chain spacer lengths on the thermal and structural properties of diethanolamine based side-chain polyesters. Polymer Bulletin, 53(1), 35–42. https://doi.org/10.1007/s00289-004-0311-z

Kojima, M., Abdellatif, M. M., & Nomura, K. (2021). Synthesis of Semicrystalline Long Chain Aliphatic Polyesters by ADMET Copolymerization of Dianhydro-D-glucityl bis(undec-10-enoate) with 1,9-Decadiene and Tandem Hydrogenation. Catalysts, 11(9), 1098. https://doi.org/10.3390/catal11091098

Lee, L.-T., Tseng, H.-Y., & Wu, T.-Y. (2021). Crystallization Behaviors of Composites Comprising Biodegradable Polyester and Functional Nucleation Agent. Crystals, 11(10), 1260. https://doi.org/10.3390/cryst11101260

Little, A., Wemyss, A. M., Haddleton, D. M., Tan, B., Sun, Z., Ji, Y., & Wan, C. (2021). Synthesis of Poly(Lactic Acid-co-Glycolic Acid) Copolymers with High Glycolide Ratio by Ring-Opening Polymerisation. Polymers, 13(15), 2458. https://doi.org/10.3390/polym13152458

maryanty, Y., Hadiantoro, S., Widjajanti, K., Putri, D. I. K., & Nikmah, L. (2021). Poly Lactic Acid (Pla) Development Using Lactic Acid Product From Rice Straw Fermentation With Azeotropic Polycondensation Process. IOP Conference Series: Materials Science and Engineering, 1053(1), 012043. https://doi.org/10.1088/1757-899X/1053/1/012043

Mekpothi, T., Meepowpan, P., Sriyai, M., Moleloy, R., & Punyodom, W. (2021). Novel Poly(Methylenelactide-g-L-Lactide) Graft Copolymers Synthesized by a Combination of Vinyl Addition and Ring-Opening Polymerizations. Polymers, 13(19), 3374. https://doi.org/10.3390/polym13193374

Pretsch, T., Jakob, I., & Müller, W. (2009). Hydrolytic degradation and functional stability of a segmented shape memory poly(ester urethane). Polymer Degradation and Stability, 94(1), 61–73. https://doi.org/10.1016/j.polymdegradstab.2008.10.012

Rahaman, M. H., Haque, M. A., Rahman, M. A., Rana, M. M., Parvez, M. M., & Alam, S. M. N. (2022). Grafting of Cellulose and Microcrystalline Cellulose with Oligo(L-lactic acid) by Polycondensation Reaction. Reactions, 3(1), 213–223. https://doi.org/10.3390/reactions3010016

Ramesh, S., Leen, K. H., Kumutha, K., & Arof, A. K. (2007). FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(4–5), 1237–1242. https://doi.org/10.1016/j.saa.2006.06.012

Saad, G. R., Lee, Y. J., & Seliger, H. (2002). Synthesis and characterization of biodegradable poly(ester-urethanes) based on bacterial poly(R-3-hydroxybutyrate). Journal of Applied Polymer Science, 83(4), 703–718. https://doi.org/10.1002/app.2265

Sastrohamidjojo, H. (1985). Spektroskopi. Liberty.

Å erá, J., Huynh, F., Ly, F., Vinter, Å ., KadleÄková, M., Krátká, V., MáÄalová, D., Koutný, M., & Wallis, C. (2022). Biodegradable Polyesters and Low Molecular Weight Polyethylene in Soil: Interrelations of Material Properties, Soil Organic Matter Substances, and Microbial Community. International Journal of Molecular Sciences, 23(24), 15976. https://doi.org/10.3390/ijms232415976

Stefaniak, K., & Masek, A. (2021). Green Copolymers Based on Poly(Lactic Acid)—Short Review. Materials, 14(18), 5254. https://doi.org/10.3390/ma14185254

Tsai, C.-J., Chang, W.-C., Chen, C.-H., Lu, H.-Y., & Chen, M. (2008). Synthesis and characterization of polyesters derived from succinic acid, ethylene glycol and 1,3-propanediol. European Polymer Journal, 44(7), 2339–2347. https://doi.org/10.1016/j.eurpolymj.2008.05.002

Zeng, J.-B., Li, Y.-D., Li, W.-D., Yang, K.-K., Wang, X.-L., & Wang, Y.-Z. (2009). Synthesis and Properties of Poly(Ester Urethane)s Consisting of Poly( l -Lactic Acid) and Poly(Ethylene Succinate) Segments. Industrial & Engineering Chemistry Research, 48(4), 1706–1711. https://doi.org/10.1021/ie801391m

Zhang, L., Zhao, G., & Wang, G. (2021). Investigation on the α/δ Crystal Transition of Poly(l-lactic Acid) with Different Molecular Weights. Polymers, 13(19), 3280. https://doi.org/10.3390/polym13193280

Zhang, T., Wu, H., Wang, H., Sun, A., & Kan, Z. (2022). Creation of fully degradable poly(lactic acid) composite by using biosourced poly(4-hydroxybutyrate) as bioderived toughening additives. Express Polymer Letters, 16(9), 996–1010. https://doi.org/10.3144/expresspolymlett.2022.72

Author Biographies

Saefuddin, Universitas Halu Oleo

Author Origin : Indonesia

Peter Davey, Griffith University

Author Origin : Australia

School of Environment

 

Downloads

Download data is not yet available.

How to Cite

Saefuddin, S., & Davey, P. . (2023). Synthesis, Characterization and Determination of Weight Poly Molecule (Lactic acid) . Jurnal Penelitian Pendidikan IPA, 9(7), 4963–4969. https://doi.org/10.29303/jppipa.v9i7.2900