2D Surface Structure Modeling in Bengkulu City using Geomagnet Method

Authors

DOI:

10.29303/jppipa.v9i2.2914

Published:

2023-02-28

Issue:

Vol. 9 No. 2 (2023): February

Keywords:

2D, Forward Modeling, Geomagnetic, Subsurface Structure

Research Articles

Downloads

How to Cite

Ramdani, R. ., Refrizon, R., Yuliza, E. ., Fadli, D. I., & Hasan, M. (2023). 2D Surface Structure Modeling in Bengkulu City using Geomagnet Method. Jurnal Penelitian Pendidikan IPA, 9(2), 803–809. https://doi.org/10.29303/jppipa.v9i2.2914

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Research on 2D modeling of the subsurface structure of the Bengkulu city area was carried out using the geomagnetic method. In this study, we collected data from 130 measurement points using a set of Proton Procession Magnetometers (PPM) to obtain the total magnetic field value. The measurement data were processed by making corrections of daily variations and IGRF (International Geomagnetic Reference Field). We conducted data correction to contour the total magnetic field anomaly. After that, the contour of total magnetic field anomaly was used for the reduction to the poles. This research results from the total magnetic field anomaly show a pair of positive and negative closures. Cross-sections were made on the positive and negative closure pairs to determine the subsurface structure of the area by making a 2-dimensional (2D) model using Mag2DC software. The interpretation of the 2D modeling results shows that three rock layers are continuously arranged. The average susceptibility value of the first layer is 0.00001 cgs which is a sandstone layer at a depth of 0-400 meters; the second layer has an average susceptibility value of 0.002 cgs which is dominated by clay at a depth of 400-700 meters, and; the third layer has an average susceptibility value of 0.006 cgs which is a basalt rock layer at a depth of 700-1000 meters.

References

Adger WN, Hughes TP, Folke C, Carpenter SR, Rockström J. (2005). Social-ecological Resilience to Coastal Disasters. Science, 309(5737):1036–1039.

Awaliyatun, F. . Z., & Hutahaean, J. (2015). Penentuan Struktur Bawah Permukaan Tanah Daerah Potensi Panas Bumi dengan Metode Geomagnetik di Tinggi Raja Kabupaten Simalungun. Jurnal Einstein, 3(1), 1–8.

Blakely, R. J. (1996). Potential Theory in Gravity and Magnetic. In Cambridge University Press.

BMKG. (2010). Sejarah Gempabumi Bengkulu dari tahun 1900.

Chen M, Tang C, Wang X, Xiong J, Shi Q, Zhang X, et al. (2021). Temporal and Spatial Differentiation in the Surface Recovery of Post-seismic Landslides in Wenchuan Earthquake-affected Areas. Ecol Inform, 64:101356.

Deniyatno. (2010). Pemodelan Kedepan (Forward Modeling ) 2 Dimensi Data Magnetik. Jurnal Aplikasi Fisika, 6(2), 76–82.

Farid M, Mase LZ. (2020). Implementation of Seismic Hazard Mitigation on the Basis of Ground Shear Strain Indicator for Spatial Plan of Bengkulu City, Indonesia. Int J GEOMATE, 18(69):199–207.

Firmansyah, F., & Budiman, A. (2019). Pendugaan Mineralisasi Emas Menggunakan Metode Magnetik di Nagari Lubuk Gadang Kecamatan Sangir, Solok Selatan, Sumatera Barat. Jurnal Fisika Unand, 8(1), 77–83. https://doi.org/10.25077/jfu.8.1.77-83.2019

Gafoer, S., Amin, T.C., Pardede, R. (2007). Geological map of Bengkulu Quadrangle, Sumatra, scale 1:250,000. Department of Mines and Energy, Directorate General of Geology and Mineral Resources, Geological Research and Development Centre.

Gafoer, S., Amin, T.C., Pardede, R. (2012). Geology of the Bengkulu Quadrangle, Sumatra. Department of Mines and Energy, Directorate General of Geology and Mineral Resources, Geological Research and Development.

Hadi, A.I., Farid, M. & Fauzi, Y. (2012). Pemetaan Percepatan Getaran Tanah Maksimum dan Kerentanan Seismik Akibat Gempa Bumi untuk Mendukung Rencana Tata Ruang dan Wilayah (RTRW) Kota Bengkulu. J. Simetri, 1(2(D)), 1217-81-1217–1286.

Hadi, A. I., Refrizon, R., Halauddin, H., Lidiawati, L., & Edo, P. (2021). Interpretasi Tingkat Kekerasan Batuan Bawah Permukaan di Daerah Rawan Gempa Bumi Kota Bengkulu. Indonesian Journal of Applied Physics, 11(1), 11. https://doi.org/10.13057/ijap.v11i1.46525

Lestari, I. O. (2018). Analisis Hubungan Vs30 Pengukuran MASW dan Data USGS Terhadap f0 Dari Pengukuran Mikrotremor di Kota Bengkulu. 0–43.

Mase, L. Z., Likitlersuang, S., & Tobita, T. (2019). Cyclic behaviour and liquefaction resistance of Izumio sands in Osaka, Japan. Marine Georesources & Geotechnology, 37, 7, 765-774.

Macmillan, S., & Maus, S. (2005). International geomagnetic reference field - The tenth generation. Earth, Planets and Space, 57(12), 1135–1140. https://doi.org/10.1186/BF03351896

Misliniyati, R., Mase, L. Z., Syahbana, A. J., & Soebowo, E. (2018). Seismic hazard mitigation for Bengkulu Coastal area based on site class analysis. In IOP Conference Series: Earth and Environmental Science, 212, 1, article no. 012004, 1-10.

Norio O, Ye T, Kajitani Y, Shi P, Tatano H. (2011). The 2011 Eastern Japan Great Earthquake Disaster: Overview and Comments. Int J Disaster Risk Sci, 2(1):34–42.

Peng Y, Gu X, Zhu X, Zhang F, Song Y. (2020). Recovery Evaluation of Villages Reconstructed with Concentrated Rural Settlement After the Wenchuan Earthquake. Nat Hazards, 104(0123456789):139–66. https://doi.org/10.1007/s11069-020-04241-z.

Saroh Muzhaffar, D., Nurwidyanto, I., & Harmoko, D. U. (2016). Interpretasi Struktur Bawah Permukaan Menggunakan Metode Magnetik (Daerah Sekitar Sungai Oyo Yogyakarta). Youngster Physics Journal, 5(4), 245–250.

Setiadi, I., Darmawan, A., & Marjiyono. (2016). Pendugaan Struktur Geologi Bawah Permukaan Daerah Terdampak Lumpur Sidoarjo (Lusi) Berdasarkan Analisis Data Geomagnet. Jurnal Lingkungan Dan Bencana Geologi, 7(692), 125–134. http://jlbg.geologi.esdm.go.id/index.php/jlbg/article/view/103/100

Simbolon, P., Refrizon, R., & Sugianto, N. (2020). Peta Sebaran Intensitas Anomali Magnetik Di Daerah Prospek Geothermal Kepahiang Berdasarkan Survei Metode Geomagnet. Newton-Maxwell Journal of Physics, 1(1), 7–12. https://doi.org/10.33369/nmj.v1i1.14290

Susilo A, Isdarmadi K. (2017). Investigation of Jabung Temple Subsurface at Probolinggo, Indonesia using Resistivity and Geomagnetics Method. International Journal of GEOMATE, 13(40):74–80.

Stella, A., & David, F. (2015). Regional Magnetic Field Trend and Depth to Magnetic Source Determination from Aeromagnetic Data of Maijuju Area, North Central, Nigeria. Physical Science International Journal, 8(3), 1–13. https://doi.org/10.9734/psij/2015/21652

Sukkarak, R., Tanapalungkorn, W., Likitlersuang, S., & Ueda, K. (2021). Liquefaction analysis of sandy soil during strong earthquake in Northern Thailand. Soils and Foundations, 61, 5, 1302-1318.

Sunardi, B., Putri, E.N., Susilanto, P. dan Ngadmanto, D. (2017). Penerapan Metode Inversi HVSR Untuk Pencitraan 3-D Kecepatan Gelombang Kecepatan Gelombang Geser ( Vs ) di Kulon Progo Bagian Selatan. Jurnal Riset Geofisika Indonesia, 1(2), 47–53.

Telford W.M., Geldart L.P., S. R. E. (1990). Applied Geophysics. Cambridge University Press.

Theilen-Willige B. (2010). Detection of local site conditions influencing earthquake shaking and secondary effects in Southwest-Haiti using remote sensing and GIS-methods. Nat Hazards Earth Syst Sci, 10(6):1183–96.

Veinović, Ž., Domitrović, D. & Lovrić, T. (2007): Historical Occurrence of Liquefaction in Zagreb Area and Estimation of Reoccurrence in Case of Another Strong Earthquake. Rudarsko-geološko-naftni zbornik, 19, 1, 111-120.

Author Biographies

Rama Ramdani, University of Bengkulu

Refrizon Refrizon, University of Bengkulu

Elfi Yuliza, University of Bengkulu

Darmawan Ikhlas Fadli, University of Bengkulu

Muhamad Hasan, University of Bengkulu

License

Copyright (c) 2023 Rama Ramdani, Refrizon Refrizon, Elfi Yuliza, Darmawan Ikhlas Fadli, Muhamad Hasan

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).