Characteristics of Concrete With Red Sand Mixture 80 Mesh Grain Size After Combustion

Authors

Mukti Hamjah Harahap , Winsyahputra Ritonga , Nova Adelia

DOI:

10.29303/jppipa.v9i8.3107

Published:

2023-08-25

Issue:

Vol. 9 No. 8 (2023): August

Keywords:

Compressive strength, Porosity, Post burn, Red sand, SEM-EDX

Research Articles

Downloads

How to Cite

Harahap, M. H., Ritonga, W. ., & Adelia, N. . (2023). Characteristics of Concrete With Red Sand Mixture 80 Mesh Grain Size After Combustion. Jurnal Penelitian Pendidikan IPA, 9(8), 6540–6547. https://doi.org/10.29303/jppipa.v9i8.3107

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Research has been done on the Characteristics of Concrete with a Mix of Red Sand Grain Size 80 Mesh Post-burning. This study aims to determine the characteristics of concrete with a mixture of red sand grain size 80 Mesh Post-burning on the compressive strength, porosity and structure of the concrete. The test object is a cube of 15 cm x 15 cm x 15 cm with concrete quality K-225. In this study, variations in the composition of 80 mesh size red sand were made of 0%, 2%, 3% and 4%. After the concrete is 24 hours old, the mold is opened and given a sample code and treated in an immersion water bath. After going through an immersion period of 28 days, the concrete was burned in an oven with temperature variations of 400℃, 550℃, 700℃ and 850℃ and tested. The test methods used are compressive strength, porosity and Scanning Electron Microscope Energy Dispersive X-Ray (SEM-EDX). From the test results obtained the maximum average compressive strength obtained in concrete with a mixture of red sand of 4% with a temperature of 550℃. From the results of the porosity test, there was a decrease in the concrete with the addition of red sand by 4%. From the results of the SEM test, the concrete structure with a mixture of red sand has fewer and smaller cavities. From the results of the EDX test on concrete with a mixture of red sand, Calcium (Ca) and Stibium (Sb) elements have increased intensity when compared to normal concrete. From the XRD test results obtained elements - elements SiO2 (Silicon Oxide), Ca(OH)2 (Calcium Hydroxide) and CaO3 (Calcite) with the highest intensity is SiO2.

References

Agusri, E., & A Rivai, M. (2019). Pengaruh Penambahan Pasir Besi Terhadap Kuat Tekan Beton K-300. Bearing: Jurnal Penelitian Dan Kajian Teknik Sipil, 6(1). https://doi.org/10.32502/jbearing.2201201961

Alkhamuddin, A., & Adiguna, A. (2019). Simulasi Perubahan Kuat Tekan Beton Pada Kondisi Ekstrim Pasca Pembakaran. Jurnal Deformasi, 3(2), 157. https://doi.org/10.31851/deformasi.v3i2.2361

Arbain, T. (2019). Sifat Mekanis Beton Dengan Campuran Pasir Pantai dan Air Laut. Jurnal Teknologi Sipil, 3(1). https://doi.org/10.30872/ts.v3i1.2765

Aziz, N., Halim, A., & Aji Suraji, D. (2022). Pengaruh Jenis Semen Dan Penambahan Tetes Tebu Terhadap Mutu Karakteristik Beton. Jurnal Intakindo Jatim, 1(1), 67–68. Retrieved from https://www.intakindojatim.org/jurnal/index.php/JIJ/article/view/9

Budiman, B. (2018). Penggunaan Serat Alami Terhadap Kuat Tekan Beton pada Beton Normal. Jurnal SAINTEK, 1(1), 7–12. Retrieved from https://isaintek.polinef.ac.id/index.php/isaintek/article/download/6/39

Delia, M., & Eko, W. (2021). Pengaruh Pembakaran Terhadap Kekuatan Beton Menggunakan Bahan Campur FLY ASH. Jurnal Konstruksi, 19(1). Retrieved from https://jurnal.itg.ac.id/index.php/konstruksi/article/view/985

Dewi, S. U., & Nanda, A. Y. (2021). Analisis Pengaruh Peningkatan Durasi Waktu Terhadap Kuat Tekan Mutu Beton K-250 Pasca Kebakaran. Teknika Sains: Jurnal Ilmu Teknik, 6(2), 84–90. https://doi.org/10.24967/teksis.v6i2.1410

Hadi, S. (2020). Analisis Jenis Pasir Terhadap Kuat Tekan Beton. Jurnal Kacapuri: Jurnal Keilmuan Teknik Sipil, 3(2), 146. https://doi.org/10.31602/jk.v3i2.4075

Hakim, S. A., Tarigan, K., Sembiring, T., Situmorang, M., Sebayang, K., & Tamba, L. Y. (2020). Characterization of k175 concrete sni standards using volcanic ash aggregates with variation in composition. Journal of Physics: Conference Series, 1485(1). https://doi.org/10.1088/1742-6596/1485/1/012064

Hamdi, F., Amir Zainuddin, M., & Gaffar, F. (2018). Degradasi Mekanik Beton Mutu Tinggi Pasca Bakar. Semesta Teknika, 21(2). https://doi.org/10.18196/st.212230

Harahap, M. H., & Putri, A. E. (2020). Effect of variations in the composition and size of red sand grains on the quality of K-225 concrete. Journal of Metals, Materials and Minerals, 30(4), 79–83. https://doi.org/10.55713/jmmm.v30i4.765

Haris. (2020). Studi Pemanfaatan Limbah Kulit Kerang sebagai Agregat Kasar pada Beton Normal. Tolis Ilmiah: Jurnal Penelitian, 2(1). https://doi.org/10.56630/jti.v2i1.96

Haris, H. M., & Tahir, S. (2020). Studi Eksperimental Kuat Tekan Beton Dengan Mensubtitusikan Limbah Batu Bata Pada Semen. Siimo Engineering: Journal Teknik Sipil, 4(1), 39–52. https://doi.org/10.31934/siimo.v4i1.1110

Hidayat, N. A., Herlina, N., & Nursani, R. (2021). Analisa Karakteristik Kuat Tekan Beton Fc’25 MPa dengan Menggunakan Bahan Tambah Gula Merah. Akselerasi: Jurnal Ilmiah Teknik Sipil, 3(1). https://doi.org/10.37058/aks.v3i1.3555

Hitipeuw, A., Intan, S., & Johannes, V. (2020). Pemanfaatan Material Agregat Halus Dan Agregat Kasar Quarry Wailava Dengan Bahan Kimia Sikacim Untuk Campuran Beton Struktur. Jurnal Ilmu Teknik, 4, 1. Retrieved from http://ojs.ukim.ac.id/index.php/manumata/article/view/230

Karolina, R., & Yulia Corsika, M. S. (2020). Analysis of mechanical and physical behaviour of post-burn concrete. IOP Conference Series: Materials Science and Engineering, 725(1). https://doi.org/10.1088/1757-899X/725/1/012034

Kurniati, D. (2019). Penguatan Kapasitas Lentur Beton Dengan Pemanfaatan Limbah. Jurnal Media Teknik Sipil, 16(2), 86–91. https://doi.org/10.22219/jmts.v16i2.6522

Lianasari, A. E., Manggolo, S. T., & Tanesia, R. K. (2013). Pengaruh Suhu Pembakaran Terhadap Sifat Mekanik Beton Fly Ash Dengan Penambahan Water Reducer. Konferensi Nasional Teknik Sipil 7. Retrieved from https://rb.gy/kjhdf

Masagala, A. A. (2022). Pengaruh Penambahan Damdex dan Crumb Rubber Terhadap Peresapan Air dan Kuat Tekan Pasca Bakar. Jurnal Karkasa, 8(1), 8–13. Retrieved from https://www.poltekstpaul.ac.id/jurnal/index.php/jkar/article/view/435

Muhammad, R., Prasetiowati., S. H., Masduqi, E., & Agustina, S. (2023). Karakteristik Beton Dengan Campuran Pasir Pantai Sebagai Agregat Halus. Jurnal Rekayasa Lingkungan, 23(1). Retrieved from https://journal.ity.ac.id/index.php/JRL/article/view/176/129

Nurjanah, N., & Nikmatul, H. N. (2020). Pengaruh Penambahan Limbah Serbuk Bata Merah dan Limbah Tempurung Kelapa Terhadap Kuat Tekan Beton. Jurnal Qua Teknika, 10(2), 46-58. https://doi.org/10.35457/quateknika.v10i2.1198

Pagut, A. H., Karels, D. W., & Hunggurami, E. (2017). Karakteristik Teknis Beton Dan Mortar Menggunakan Pasir Bondo dan Bondo Merah. Jurnal Teknik Sipil, VI(1), 1–10. Retrieved from http://sipil.ejournal.web.id/index.php/jts/article/view/184/164

Prayuda, H., & Pujianto, A. (2018). Kuat Tekan Beton Mutu Tinggi Menggunakan Komparasi Agregat Gamalama, Agregat Merapi Dan Agregat Kali Progo. Jurnal Riset Rekayasa Sipil, 2(1), 1. https://doi.org/10.20961/jrrs.v2i1.24316

Rivai, M. A., Kimi, S., & Revisdah, R. (2020). Inovasi Beton Ramah Lingkungan. Bearing: Jurnal Penelitian Dan Kajian Teknik Sipil, 6(2). https://doi.org/10.32502/jbearing.2829201962

Romadhon, E. S. (2021). Pengaruh Pemakaian Filler Terhadap Kuat Tekan Beton. Jurnal Teknik Sipil-Arsitektur, 20(2), 12–24. https://doi.org/10.54564/jtsa.v20i2.76

Setiawati, M. (2018). Fly Ash Sebagai Bahan Pengganti Semen Pada Beton. Seminar Nasional Sains Dan Teknologi, 17, 1–8. Retrieved from https://jurnal.umj.ac.id/index.php/semnastek/article/view/3556

Sylvina, P. (2019). Pengaruh Bahan Tambah Batu Bata Merah Terhadap Kuat Tekan Beton FC’21 Menggunakan Agregat Kasar PT. In AMR dan Agregat Halus Desa Sunggup Kota Baru (pp. 2548–6209). Retrieved from https://ojs.ummetro.ac.id/index.php/tapak/artile/download/952/679

Zhafirah, A., Syahril, S., & Somantri, A. K. (2020). Experimental test of concrete plate deflection on soft soil improved by prefabricated vertical drain. IOP Conference Series: Materials Science and Engineering, 732(1), 012019. https://doi.org/10.1088/1757-899X/732/1/012019

Author Biographies

Mukti Hamjah Harahap, state University of Medan

Winsyahputra Ritonga, Medan State University

Nova Adelia, Medan State University

License

Copyright (c) 2023 Mukti Hamjah Harahap, Winsyahputra Ritonga, Nova Adelia

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).