Effect of Mutations Induction on Vegetative and Generative Characters of G16 Rice (Oryza sativa L.)

Authors

Ni Wayan Sri Suliartini , Shinta Adekayanti , Anak Agung Ketut Sudharmawan , I Gusti Putu Muliarta Aryana

DOI:

10.29303/jppipa.v9i5.3650

Published:

2023-05-31

Issue:

Vol. 9 No. 5 (2023): May

Keywords:

Gamma ray irradiation, Genetic diversity, Heritability, Mutant rice

Research Articles

Downloads

How to Cite

Suliartini, N. W. S., Adekayanti, S., Sudharmawan, A. A. K. ., & Aryana, I. G. P. M. . (2023). Effect of Mutations Induction on Vegetative and Generative Characters of G16 Rice (Oryza sativa L.). Jurnal Penelitian Pendidikan IPA, 9(5), 3790–3799. https://doi.org/10.29303/jppipa.v9i5.3650

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The aim of this research was to identify the vegetative and generative characters of G16 rice mutants due to gamma-ray irradiation. The experiment was conducted in Saribaye Village, Lingsar District, West Lombok Regency. The experimental design used was an Augmented Design, using three comparison plants, namely the G16 line (parent), Inpago Unram 1 variety, and IPB 3S variety. The four mutant populations tested were mutant doses of 200, 300, 400 and 500 Gy. The results showed that the induction of gamma ray mutations affected the character of plant height, flag leaf angle, flowering age, panicle length, number of filled grains per panicle, harvest age, and grain weight per clump. Comparison plants and mutant plants showed an interaction on all observed characters, except the number of total tillers and the number of productive tillers. Wide genetic diversity was shown by all characters, except flag leaf angle, total tiller number, weight of 100 grains, and weight of empty grain per clump. High heritability was obtained on the character of plant height (0.97), flag leaf angle (0.74), flowering age (0.99), number of productive tillers (0.57), panicle length (0.86), number of filled grain per panicle (0.92), number of empty grains per panicle (0.55), age at harvest (1.00), and weight of 100 grains (0.99).

References

Allard, R. W. (1960). Principles of Plant Breeding. John Wiley and Sons, Inc.

Arinta, K., & Lubis, I. (2018). Pertumbuhan dan produksi beberapa kultivar padi lokal Kalimantan. Bul. Agrohorti, 6(2), 270–280. https://doi.org/10.29244/agrob.6.2

Astuti, D., Sulistyowati, Y., & Nugroho, S. (2019). Uji radiosensitivitas sinar gamma untuk menginduksi keragaman genetik sorgum berkadar lignin tinggi. Jurnal Ilmiah Aplikasi Isotop Dan Radiasi, 15(1), 1–6. https://doi.org/10.17146/jair.2019.15.1.5480

Ayun, Q., Kurniawan, S., & Saputro, W. A. (2020). Perkembangan konversi lahan pertanian di bagian negara agraris. VIGOR: Jurnal Ilmu Pertanian Tropika Dan Subtropika, 5(2), 38–44. Retrieved from https://jurnal.untidar.ac.id/index.php/vigor/article/view/3040

BPS.go.id. (2022). Produksi Padi Tahun 2021 Turun 0,43 persen (Angka Tetap) Badan Pusat Statistik. Retrieved from https://www.bps.go.id/pressrelease/2022/03/01/1909/produksi-padi-tahun-2021-turun-0-43-persen--angka-tetap-.html

Castañeda-Ovando, A., Pacheco-Hernández, M. L., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2019). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859–871. https://doi.org/10.1016/j.foodchem.2008.09.001

Dhaka, K., Yadaw, R. B., Baral, B. R., Pokhrel, K. R., & Rasaily, S. (2021). Agro-morphological and genotypic diversity among rice germplasms under rainfed lowland condition. AGRIVITA Journal of Agricultural Science, 43(3), 466–478. https://doi.org/10.17503/agrivita.v43i3.3026

Duarte, G. T., Volkova, P. Y., Fiengo Perez, F., & Horemans, N. (2023). Chronic Ionizing Radiation of Plants: An Evolutionary Factor from Direct Damage to Non-Target Effects. Plants, 12(5), 1178. https://doi.org/10.3390/plants12051178

Dwiatmini, K., & Afza, H. (2018). Anthocyanin Content Characterization on Pigmented Local Rice as Genetic Resources of Functional Food. Buletin Plasma Nutfah, 24(2), 125. https://doi.org/10.21082/blpn.v24n2.2018.p125-134

Fadli, N., Syarif, Z., Satria, B., & Akhir, N. (2018). The Effect of Gamma Cobalt-60 Ray Irradiation on Cultivar Growth in Taro White (Xhanthosoma Sagittifolium L.). International Journal of Environment, Agriculture and Biotechnology, 3(6), 2020–2025. https://doi.org/10.22161/ijeab/3.6.9

Gudkov, S. V., Grinberg, M. A., Sukhov, V., & Vodeneev, V. (2019). Effect of ionizing radiation on physiological and molecular processes in plants. Journal of Environmental Radioactivity, 202, 8–24. https://doi.org/10.1016/j.jenvrad.2019.02.001

Hong, M. J., Kim, D. Y., Jo, Y. D., Choi, H.-I., Ahn, J.-W., Kwon, S.-J., Kim, S. H., Seo, Y. W., & Kim, J.-B. (2022). Biological Effect of Gamma Rays According to Exposure Time on Germination and Plant Growth in Wheat. Appl. Sci, 12(3208), 1–14. https://doi.org/10.3390/app12063208

Kumar, G., & Mishra, M. (2021). Mutagenic potential of gamma rays on somatic cell division and morphological parameters in Foeniculum vulgare Mill. Current Botany, 12, 66–71. https://doi.org/10.25081/cb.2021.v12.6608

Kupchishin, A. I., Taipova, B. G., Lisitsyn, V. M., & Niyazov, M. N. (2019). Study of the influence of the electron irradiation dose on the deformation of mylar films taking into account the processes of destruction and crosslinking. IOP Conference Series: Materials Science and Engineering, 510, 012025. https://doi.org/10.1088/1757-899X/510/1/012025

Kuzmanović, L., Giovenali, G., Ruggeri, R., Rossini, F., & Ceoloni, C. (2021). Small “nested†introgressions from wild Thinopyrum species, conferring effective resistance to fusarium diseases, positively impact durum wheat yield potential. Plants, 10(3), 1–16. https://doi.org/10.3390/plants10030579

Kuzmić, M. (2018). Role of protein and DNA damage in biological response to radiation and aging. Dissertation. Laboratoire de recherche sur les effets des radionucléides sur les écosystèmes. University Of Split, School of Medicine, Split.

Mardiyah, A., Marnita, Y., & Syahril, M. (2021). Keragaan dan Produksi Padi Gogo Lokal Aceh Kultivar Sileso Generasi M1 Hasil Iradiasi Sinar Gamma. Jurnal Ilmiah Aplikasi Isotop Dan Radiasi, 17(1), 11–16. Retrieved from https://jurnal.batan.go.id/index.php/jair/article/view/6231

Mardiyah, A., Wandira, A., & Syahril, M. (2022). Variabilitas Dan Heritabilitas Populasi Padi Gogo Kultivar Aarias Kuning Generasi Mutan-1 Hasil Irradiasi Sinar Gamma. Jurnal Inovasi Penelitian, 3(2), 4827–4838. Retrieved from https://stp-mataram.e-journal.id/JIP/article/view/1746

Ningrat, M. A., Mual, C. D., & Makabori, Y. Y. (2021). Pertumbuhan dan Hasil Tanaman Padi (Oryza sativa L.) pada Berbagai Sistem Tanam di Kampung Desay, Distrik Prafi, Kabupaten Manokwari. In Prosiding Seminar Nasional Pembangunan dan Pendidikan Vokasi Pertanian (Vol. 2, Issue 1, pp. 325–332). https://doi.org/10.47687/snppvp.v2i1.191

Oh, Y. J., Kwak, M. S., & Sung, M. H. (2018). Protection of radiation-induced DNA damage by functional cosmeceutical poly-gamma-glutamate. Journal of Microbiology and Biotechnology, 28(4), 527–533. https://doi.org/10.4014/jmb.1712.12016

Parlaongan, A., Supriyanto, & Wulandari, A. S. (2022). Effects of Gamma Ray Irradiation to Induce Genetic Variability of Teak Planlets (Tectona grandis Linn. F.). Journal of Sylva Indonesiana, 5(01), 10–21. https://doi.org/10.32734/jsi.v5i01.6166

Purwanto, E., Nandariyah, Yuwono, S. S., & Yunindanova, M. B. (2019). Induced mutation for genetic improvement in black rice using gamma-ray. Agrivita, 41(2), 213–220. https://doi.org/10.17503/agrivita.v41i2.876

Rahayu, S., Destavany, V., & Dasumiati. (2020). Keragaan Malai Mutan Padi Generasi M1 Hasil Iradiasi Gamma. Aplikasi Isotop Dan Radiasi, 16(2), 59–66. https://doi.org/10.17146/jair.2020.16.2.5763

Riviello-Flores, M. L., Cadena-Iñiguez, J., Ruiz-Posadas, L. M., Arévalo-Galarza, M. L., Castillo-Juárez, I., Hernández, M. S., & Castillo-Martínez, C. R. (2022). Use of gamma radiation for the genetic improvement of underutilized plant varieties. Plants (Basel), 11(9), 1161. https://doi.org/10.3390/plants11091161

Sadimantara, G. R., Nuraida, W., Suliartini, N. W. S., & Muhidin. (2018). Evaluation of some new plant type of upland rice (Oryza sativa L.) lines derived from cross breeding for the growth and yield characteristics. IOP Conf. Series: Earth and Environmental Science, 157, 12048. https://doi.org/10.1088/1755-1315/157/1/012048

Stansfield, W. D. (1991). Genetika (M. Affandi & L. T. H. Erlangga (trans.)). Erlangga.

Sudharmawan, A. A. K., Aryana, I. G. P. M., Suliartini, N. W. S., & Purnama, S. A. (2022). Genetic diversity of red rice (Oryza sativa L.) population M2 results of G16 rice genotype mutations with 200gy and 300gy gamma ray iradiation. Jurnal Biologi Tropis, 22(4), 1340–1346. https://doi.org/10.29303/jbt.v22i4.4425

Suhesti, S., Syukur, M., Husni, A., & Hartati, R. S. (2021). Increased genetic variability of sugarcane through gamma ray irradiation. IOP Conf. Series: Earth and Environmental Science, 653, 12134. https://doi.org/10.1088/1755-1315/653/1/012134

Suliartini, N. W. S., Aryana, I. G. P. M., Sudharmawan, A. A. K., & Wangiyana, W. (2021). Yield Potential Improvement of Some Lowland Red Rice Lines in F4 Pedigree Selection. Russian Journal of Agricultural and Socio-Economic Sciences, 120(12), 179–184. https://doi.org/10.18551/rjoas.2021-12.18

Suliartini, N. W. S., Aryana, I. G. P. M., Wangiyana, I. W., Ngawit, I. K., Muhidin, & Rakian, T. C. (2020). Identification of upland red rice mutant lines (ORYZA SATIVA L.) high yield potential. International Journal of Scientific and Technology Research, 9(3), 4690–4692. Retrieved from https://www.ijstr.org/final-print/mar2020/Identification-Of-Upland-Red-Rice-Mutant-Lines-oryza-Sativa-L-High-Yield-Potential.pdf

Suliartini, N. W. S., Wijayanto, T., Madiki, A., Boer, D., Muhidin, & Juniawan. (2018). Relationship of some upland rice genotype after gamma irradiation. IOP Conf. Series: Earth and Environmental Science, 122, 12033. https://doi.org/10.1088/1755-1315/122/1/012033

Susila, E., Susilowati, A., & Yunus, A. (2019). The morphological diversity of Chrysanthemum resulted from gamma ray irradiation. BIODIVERSITAS, 20(2), 463–467. https://doi.org/10.13057/biodiv/d200223

Syahril, M. (2018). Rancangan bersekat (augmented design) untuk penelitian bidang pemuliaan tanaman. Jurnal Penelitian Agrosamudra, 5(1), 63–66. Retrieved from https://jurnal.unsam.ac.id/index.php/jagrs/article/view/848

Taneva, K., Bozhanova, V., & Petrova, I. (2019). Variability, heritability and genetic advance of some grain quality traits and grain yield in durum wheat genotypes. Bulgarian Journal of Agricultural Science, 25(2), 288–295. Retrieved from https://www.agrojournal.org/25/02-10.pdf

Tang, L., Risalat, H., Cao, R., Hu, Q., Pan, X., Hu, Y., & Zhang, G. (2022). Food Security in China: A Brief View of Rice Production in Recent 20 Years. Foods, 11(21), 3324. https://doi.org/10.3390/foods11213324

Tumanggor, G. E., Iswahyudi, & Mardiyah, A. (2022). Pertumbuhan, produksi dan karakter genetik padi kultivar Sileso generasi M-2 hasil iradiasi sinar gamma. Jurnal Penelitian Agrosamudra, 9(2), 31–40. Retrieved from https://ejurnalunsam.id/index.php/jagrs/article/view/6519/3786

Umam, R., Sudharmawan, & Sumarjan. (2018). Tampilan Sifat Kuantitatif Beberapa Galur F7 Padi Beras Merah (Oryza sativa L.) Hasil Silang Ganda Indica Dengan Javanica. Crop Agro, 11(1), 40–47. Retrieved from https://cropagro.unram.ac.id/index.php/caj/article/view/188/157

Vondras, A. M., Minio, A., Blanco-Ulate, B., Figueroa-Balderas, R., Penn, M. A., Zhou, Y., Seymour, D., Ye, Z., Liang, D., Espinoza, L. K., Anderson, M. M., Walker, M. A., Gaut, B., & Cantu, D. (2019). The genomic diversification of grapevine clones. BMC Genomics, 20(1), 972. https://doi.org/10.1186/s12864-019-6211-2

Wahyuni, H., Swasti, E., & Yusniwati, Y. (2019). Genetic Diversity Of Age, Plant Height And Number Of Grain Per Panicle Characters Of F3 Generation Derived From Crossing Silopuk With Fatmawati Varieties. JERAMI Indonesian Journal of Crop Science, 1(2), 36–46. https://doi.org/10.25077/jijcs.1.2.36-46.2019

Wahyuni, S., Siregar, H. M., Isnaini, Y., Widiarsih, S., & Dwimahyani, I. (2022). Keragaman Morfologi Hibrid Begonia sagaensis Wiriad x Begonia galeolopsis Ardi & D.C. Rhomas Hasil Iradiasi Sinar Gamma. Buletin Kebun Raya, 25(1), 22–33. https://doi.org/10.55981/bkr.2022.743

Widyapangesthi, D. A., Moeljani, I. R., & Soedjarwo, D. P. (2022). Keragaman Genetik Dan Heritabilitas M1 Mentimun (Cucumis sativus L.) Lokal Madura Hasil Iradiasi Sinar Gamma 60CO. Jurnal Agrium, 19(2), 191. https://doi.org/10.29103/agrium.v19i2.7841

Wu, J. H., Zhang, J., Lan, F., Fan, W. F., & Li, W. (2019). Morphological, cytological, and molecular variations induced by gamma rays in ground-grown chrysanthemum ‘Pinkling.’ Can. J. Plant Sci, 100, 68–77. https://doi.org/10.1139/cjps-2019-0064

Wulandari, Y. A., Sobir, & Aisyah, S. I. (2019). Studi radiosensitivitas dan analisis keragaman M1 kacang tunggak (Vigna unguiculata L) hasil induksi mutasi. Jurnal Agrosains Dan Teknologi, 4(1), 1–9. https://doi.org/10.24853/jat.4.1.1-9

Yunus, A., Parjanto, N., & Wulandari, S. (2018). Performance of Mentik Wangi rice (Oryza sativa L.) M2 generation from gamma ray irradiation. IOP Conf. Ser.: Earth Environ. Sci, 142, 12050. https://doi.org/10.1088/1755-1315/142/1/012050

Zafar, S. A., Aslam, M., Albaqami, M., Ashraf, A., Hassan, A., Iqbal, J., Maqbool, A., Naeem, M., Al-Yahyai, R., & Zuan, A. T. K. (2022). Gamma rays induced genetic variability in tomato (Solanum lycopersicum L.) germplasm. Saudi Journal of Biological Sciences, 29(5), 3300–3307. https://doi.org/10.1016/j.sjbs.2022.02.008

Author Biographies

Ni Wayan Sri Suliartini, Universitas Mataram

Shinta Adekayanti, University of Mataram

Anak Agung Ketut Sudharmawan, University of Mataram

I Gusti Putu Muliarta Aryana, University of Mataram

License

Copyright (c) 2023 Ni Wayan Sri Suliartini

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).