Effect of Geometry and Number of Seismic Stations on Micro-Earthquake (MEQ) Hypocenters in Geothermal Fields
DOI:
10.29303/jppipa.v9i10.3742Published:
2023-10-25Issue:
Vol. 9 No. 10 (2023): OctoberKeywords:
Geiger, Geometry, Geothermal, Micro-earthquake (MEQ), Seismic StationResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Micro-earthquake (MEQ) distribution describes subsurface conditions that can contribute to monitoring the dynamics of geothermal reservoirs. Thus, the distribution of MEQ hypocenter locations with high accuracy becomes extremely important. Experiments were conducted with 3 variations of geometry and number of seismic stations, while Geiger and Coupled Velocity-Hypocenter methods were used to determine the location of MEQ. Experimental results show that in determining the location of the MEQ, the geometry and number of seismic stations played an important role. Increasing the number of stations with relatively long distances can result in less accurate locations of MEQ, error and bias in determining the location of MEQ will be greater when the azimuth gap value is greater. This is shown by the distribution of MEQ that are more spread out in variations 4A and 4B (4 seismic stations) compared to the distribution of MEQ hypocenters using data from 8 seismic stations. The azimuth gap variations of stations 4A and 4B are 283° and 267°, and 8 stations have a value of 222°. The large value of the azimuth gap is due to the distribution of stations only on one side so that there are horizontal angles that are not covered by seismic stations.
References
Anderson, A., & Rezaie, B. (2019). Geothermal technology: Trends and potential role in a sustainable future. Applied Energy, 248(, 18–34. https://doi.org/10.1016/j.apenergy.2019.04.102.
Aneke, M. C., & Menkiti, M. C. (2016). Geothermal: History, Classification, and Utilization for Power Generation. In Alternative Energy and Shale Gas Encyclopedia, 251–264. https://doi.org/10.1002/9781119066354.ch26
Barbosa, N. D., Solazzi, S. G., & Lupi, M. (2020). Seismically Induced Unclogging in Fluid-Saturated Faults. Journal of Geophysical Research: Solid Earth, 125(8), 1–20. https://doi.org/10.1029/2020JB020152.
Bertani, R. (2016). Geothermal power generation in the world 2010-2014 update report. Geothermics, 60, 31–43. https://doi.org/10.1016/j.geothermics.2015.11.003.
Bidang, A. W. (2020). Pengaruh Penambahan Stasiun-Stasiun Seismik (STPI, TSPI, dan IWPI) Terhadap Analisa Penentuan Parameter Gempa Bumi Studi Kasus Gempa Bumi Di Wilayah Papua Barat Tahun 2019 – 2020. Biolearning Journal, 34(1), 1–17. https://doi.org/10.15233/gfz.2017.34.5.
Bondár, I., Myers, S. C., Engdahl, E. R., & Bergman, E. A. (2004). Epicentre accuracy based on seismic network criteria. Geophysical Journal International, 156(3), 483–496. https://doi.org/10.1111/j.1365-246X.2004.02070.x
Chen, Y., & Huang, L. (2018). Microearthquake Hypocenter-Location and Focal-Mechanism Inversions for the EGS Collab Project: A Synthetic Study. Pangea.Stanford.Edu, 1–6. Retrieved from https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2018/Chen.pdf
Cheng, A. (2022). President’s Page: Geothermal energy: Current and future. Leading Edge, 41(9), 588–589. https://doi.org/10.1190/tle41090588.1.
Fahntalia, C. P., & Madlazim. (2017). Pengaruh Jumlah Stasiun Seismik Terhadap Hasil Estimasi Centroid Moment Tensor Gempa Bumi. Jurnal Inovasi Fisika Indonesia (IFI), 6(3), 1–5. Retrieved from https://ejournal.unesa.ac.id/index.php/inovasi-fisika-indonesia/article/view/19899
Farhan, F., Syamsu Rosid, M., Riziq Maulana, M., & Iskandar, C. (2019). The First Study of 3-D Seismic Velocities Tomography Inversion to Delineate Reservoir Steam Zone at “fR†Geothermal Field West Java. Journal of Physics: Conference Series, 1351(1). https://doi.org/10.1088/17426596/1351/1/012049.
Firdaus Al Hakim, M., Sule, R., & Hendriyana, A. (2019). Seismicity Analysis and Velocity Structure of the Two-Phase Geothermal Field in West Java, Indonesia: Preliminary Result. IOP Conference Series: Earth and Environmental Science, 318(1). https://doi.org/10.1088/17551315/318/1/012039
Geoffroy, L., Dorbath, C., Ãgústsson, K., Kristjánsdóttir, S., Flóvenz, Ó. G., Doubre, C., Gudmundsson, Ó., Barreyre, T., Bazin, S., & Franco, A. (2022). Hydrothermal fluid flow triggered by an earthquake in Iceland. Communications Earth and Environment, 3(1). https://doi.org/10.1038/s43247-022-00382-0.
Halim, G. R., Utama, W., & Mariyanto, M. (2020). Uji Lokasi Hiposenter Mikro-Earthquake (Meq) dengan Metode Inversi Simulated Annealing pada Lapangan Panas Bumi “XX.†Jurnal Geosaintek, 6(2), 71. https://doi.org/10.12962/j25023659.v6i2.6548.
Huang, W., Wang, R., & Chen, Y. (2018). Regularized non-stationary morphological reconstruction algorithm for weak signal detection in microseismic monitoring: Methodology. Geophysical Journal International, 213(2), 1189–1211. https://doi.org/10.1093/gji/ggy054
Intani, R. G., Golla, G. U., Syaffitri, Y., Paramitasari, H. M., Nordquist, G. A., Nelson, C., Ginanjar, Giri, G. K. D. S., & Sugandhi, A. (2020). Improving the conceptual understanding of the Darajat Geothermal Field. Geothermics, 83(September). https://doi.org/10.1016/j.geothermics.2019.101716
Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Ahmad, D., & Lipinski, T. (2020). Latent thermal energy storage technologies and applications: A review. International Journal of Thermofluids, 5–6, 100039. https://doi.org/10.1016/j.ijft.2020.100039.
Karasözen, E., & Karasözen, B. (2020). Earthquake location methods. GEM - International Journal on Geomathematics, 11(1). https://doi.org/10.1007/s13137-020-00149-9.
Kato, A., Sakai, S., Matsumoto, S., & Iio, Y. (2021). Conjugate faulting and structural complexity on the young fault system associated with the 2000 Tottori earthquake. Communications Earth and Environment, 2(1), 1–10. https://doi.org/10.1038/s43247-020-00086-3.
Kianimehr, H., Kissling, E., Yaminifard, F., & Tatar, M. (2018). Regional minimum 1-D P-wave velocity model for a new seismicity catalogue with precise and consistent earthquake locations in southern Iran. Journal of Seismology, 22(6), 1529–1547. https://doi.org/10.1007/s10950-018-9783-4.
Kissling, E. (1998). Geotomography with Local Earthquake Data. Journal of Chemical Information and Modeling, 26(4), 6. https://doi.org/10.1017/CBO9781107415324.004
Kissling, E., Kradolfer, U., & Murer, H. (1995). Program VELEST USER’S GUIDE - Short Introduction. In Institute of Geophysics, ETH Zurich
Küperkoch, L., Olbert, K., & Meier, T. (2018). Long-term monitoring of induced seismicity at the Insheim geothermal site, Germany. Bulletin of the Seismological Society of America, 108(6), 3668–3683. https://doi.org/10.1785/0120170365.
Lund, J. W., Freeston, D. H., & Boyd, T. L. (2011). Direct utilization of geothermal energy 2010 worldwide review. Geothermics, 40(3), 159–180. https://doi.org/10.1016/j.geothermics.2011.07.04.
Madrinovella, I. (2012). Studi Penentuan dan relokasi Hiposenter Serta Mekanisme Fokus Gempa Mikrodi Sekitar Cekungan Bandung. Jurnal Geofisika, 13(2), 80–88.
Mahwa, J., Li, D. jiang, Ping, J. hua, Leng, W., Tang, J. bo, & Shao, D. yun. (2022). Mapping the spatial distribution of fossil geothermal manifestations and assessment of geothermal potential of the Tangyin rift, Southeast of Taihang Mountain in China. Journal of Mountain Science, 19(8), 2241–2259. https://doi.org/10.1007/s11629-022-7329-2.
Midzi, V., Pule, T., Manzunzu, B., Mulabisana, T., Zulu, B. S., & Myendeki, S. (2020). Improved earthquake location in the gold mining regions of south africa using new velocity models. South African Journal of Geology, 123(1), 35–58. https://doi.org/10.25131/sajg.123.0008.
Moya, D., Aldás, C., & Kaparaju, P. (2018). Geothermal energy: Power plant technology and direct heat applications. In Renewable and Sustainable Energy Reviews, 94, 889–901. https://doi.org/10.1016/j.rser.2018.06.047.
Nishi, K. (2005). Hypocenter Calculation Software GAD (Geiger’s method with Adaptive Damping) GAD Manual Guide.
Østergaard, P. A., Duic, N., Noorollahi, Y., Mikulcic, H., & Kalogirou, S. (2020). Sustainable development using renewable energy technology. Renewable Energy, 146, 2430–2437. https://doi.org/10.1016/j.renene.2019.08.094.
Pennington, C. N., Chang, H., Rubinstein, J. L., Abercrombie, R. E., Nakata, N., Uchide, T., & Cochran, E. S. (2022). Quantifying the Sensitivity of Microearthquake Slip Inversions to Station Distribution Using a Dense Nodal Array. Bulletin of the Seismological Society of America, 112(3), 1252–1270. https://doi.org/10.1785/0120210279.
Rahmaningtyas, N. I., Utama, W., & Lestari, W. (2020). Analisis Sumber Gempa Mikro Melalui Distribusi Lokasi Hiposenter Menggunakan Metode Double Difference pada Lapangan Panas Bumi “X.†Jurnal Geosaintek, 6(1), 33. https://doi.org/10.12962/j25023659.v6i1.6549
Riziq Maulana, M., Syamsu Rosid, M., Farhan, F., & Iskandar, C. (2019). Identification of Fracture Density and Orientation at “r†Geothermal Field Using Shear Wave Splitting Microearthquake Method. Journal of Physics: Conference Series, 1351(1). https://doi.org/10.1088/17426596/1351/1/012050.
Sevilla, W. I., Jumawan, L. A., Clarito, C. J., Quintia, M. A., Dominguiano, A. A., & Solidum, R. U. (2020). Improved 1D velocity model and deep long-period earthquakes in Kanlaon Volcano, Philippines: Implications for its magmatic system. Journal of Volcanology and Geothermal Research, 393, 106793. https://doi.org/10.1016/j.jvolgeores.2020.106793.
Sicking, C., & Malin, P. (2019). Fracture seismic: Mapping subsurface connectivity. Geosciences (Switzerland), 9(12). https://doi.org/10.3390/geosciences9120508.
Siddiq, N. A., Chong, W. Y., Pramono, Y. H., Muntini, M. S., Asnawi, A., & Ahmad, H. (2020). All-Optical Humidity Sensor Using SnO2 Nanoparticle Drop Coated on Straight Channel Optical Waveguide. Photonic Sensors, 10(2), 123–133. https://doi.org/10.1007/s13320-019-0563-8.
Toledo, T., Jousset, P., Maurer, H., & Krawczyk, C. (2020). Optimized experimental network design for earthquake location problems: Applications to geothermal and volcanic field seismic networks. Journal of Volcanology and Geothermal Research, 391(3). https://doi.org/10.1016/j.jvolgeores.2018.08.011.
Utama, W., Ardhya, S., Anggita, V., Lestari, W., & Desa, D. (2022). Delay Time (δt) and Polarization Direction (φ) Analysis Based on Shear Wave Splitting (SWS) Method. International Journal on Advanced Science, Engineering and Information Technology, 12(5), 2075–2082. https://doi.org/10.18517/ijaseit.12.5.13100
Utama, W., & Garini, S. A. (2022). Hypocenter Determination and Estimation 1-D Velocity Models Using Coupled Velocity-Hypocenter Method. International Journal on Advanced Science, Engineering and Information Technology, 12(3), 892–898. https://doi.org/10.18517/ijaseit.12.3.12488.
Utama, W., Garini, S. A., & Indrianii, R. F. (2022). Distribution Analysis of Micro-earthquakes in Geothermal Areas by using Coupled Velocity-Hypocenter and Double Difference Methods. In Review : Jurnal Teknologi, 1(2016), 1–5.
Utama, W., Garini, S. A., & Lansa, F. S. (2022). The Effect of Picking Uncertainty Window Interval (∆Tp) on Hypocenter Micro-Earthquake (MEQ) Location using Geiger Method. Journal of Marine-Earth Science Technology, 3(1), 5–10. https://doi.org/10.12962/j27745449.v3i1.439
Utama, W., Warnana, D. D., & Garini, S. A. (2021). Identification of Micro-Earthquake Hypocentre using Geiger and Coupled Velocity-Hypocentre Methods. International Journal on Advanced Science, Engineering and Information Technology, 11(1), 350–355. https://doi.org/10.18517/ijaseit.11.1.10589
Wildan Perdana, M., Mendrofa, D., Lubis, T., Nordquist, G., Energy, S., & Salak, G. (2020). Microearthquake Monitoring at Salak Geothermal Field, Indonesia: Application of Tomography Inversion and Its Impact on Reservoir Characterization Precision Gravity and Leveling for Salak Geothermal Field Monitoring View project Muhamad Wildan Perdana Star. World Geothermal Congress, May. Retrieved from https://www.researchgate.net/publication/356283797.
Yang, Z., Yehya, A., Iwalewa, T. M., & Rice, J. R. (2021). Effect of Permeability Evolution in Fault Damage Zones on Earthquake Recurrence. Journal of Geophysical Research: Solid Earth, 126(9), 1–17. https://doi.org/10.1029/2021JB021787.
Zaini, N., Yanis, M., Abdullah, F., Van Der Meer, F., & Aufaristama, M. (2022). Exploring the geothermal potential of Peut Sagoe volcano using Landsat 8 OLI/TIRS images. Geothermics, 105(June), 102499. https://doi.org/10.1016/j.geothermics.2022.102499.
Zhang, M., Ellsworth, W. L., & Beroza, G. C. (2019). Rapid Earthquake Association and Location. Seismological Research Letters, 90(6), 2276–2284. https://doi.org/10.1785/0220190052.
Author Biographies
Widya Utama, Department of Geophysics Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
Sherly Ardhya Garini, Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
Merry C. Hutapea, Department of Geophysics Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
Dhea Pratama Novian Putra, Department of Geomatics Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
Dwa Desa Warnana, Department of Geophysics Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
Wien Lestari, Department of Geophysics Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
License
Copyright (c) 2023 Widya Utama, Sherly Ardhya Garini, Merry C. Hutapea, Dhea Pratama Novian Putra, Dwa Desa Warnana, Wien Lestari

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).