Analysis of the Effect of Local Magnitude on Peak Ground Acceleration and Seismic Vulnerability Index for Geothermal Field Monitoring Using Microearthquake

Authors

Widya Utama , Rista Fitri Indriani , Sherly Ardhya Garini

DOI:

10.29303/jppipa.v9i10.3743

Published:

2023-10-25

Issue:

Vol. 9 No. 10 (2023): October

Keywords:

Geothermal, Local Magnitude, Microearthquakes, Monitoring, Seismic

Research Articles

Downloads

How to Cite

Utama, W., Indriani, R. F., & Garini, S. A. (2023). Analysis of the Effect of Local Magnitude on Peak Ground Acceleration and Seismic Vulnerability Index for Geothermal Field Monitoring Using Microearthquake. Jurnal Penelitian Pendidikan IPA, 9(10), 7855–7864. https://doi.org/10.29303/jppipa.v9i10.3743

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Intensive exploitation of geothermal injection and production can trigger microearthquakes which it signals come from dynamic fractures. The purpose of this study is to decide the impact of local magnitude on mitigation in geothermal fields based on soil acceleration and vulnerability of seismic in geothermal fields. This study uses seismic wave recording data and the geology of the research area. It is focable on calculating local magnitude, ground acceleration and seismic susceptibility index to earthquakes based on ground acceleration and seismic susceptibility index in geothermal fields. The maximum amplitude value represent that the medium classification class (3<A0<6) is associated with a moderate degree of deformation. Natural frequency value are found with a moderate classification (4<f0<10) around the area of injection wells and production wells, indicating that the research area has a moderate level of soil hardness structure. The peak ground acceleration in the study area is classified as moderate (0.25<PGA<0.7) which means that the area has a moderate level of risk. Vulnerability of seismic in the study area is included in the low classification (Kg<10). The local magnitude impact on soil acceleration and vulnerability of seismic in this study has a moderate risk and can be categorised as safe. In the future, this research serves as a basis for proper decision-making in geothermal energy operations, monitoring, and infrastructure development

References

Alkan, A., & Akkaya, İ. (2023). Investigation of site properties of the Çaldıran (Van, Eastern Turkey) settlement area using surface wave and microtremor methods. In Journal of African Earth Sciences, 197. https://doi.org/10.1016/j.jafrearsci.2022.104737

Andinisari, R., Konstantinou, K. I., & Ranjan, P. (2021). Moment tensor inversion of microearthquakes along the Santorini-Amorgos zone: Tensile faulting and emerging volcanism in an extensional setting. Journal of Volcanology and Geothermal Research, 420, 107394. https://doi.org/10.1016/j.jvolgeores.2021.107394

Bulo, D., Djayus, Supriyanto, & Hendrawanto, B. (2020). Penentuan Titik Epicenter dan Hypocenter Serta Parameter Magnitude Gempa Bumi Berdasarkan Data Seismogram. Jurnal Geosains Kutai Basin, 3(1), 1–8. Retrieved from http://jurnal.fmipa.unmul.ac.id/index.php/geofis/article/view/597

Cao, R., Shi, J., Jia, Z., Cao, C., Cheng, L., & Liu, G. (2023). A modified 3D-EDFM method considering fracture width variation due to thermal stress and its application in enhanced geothermal system. Journal of Hydrology, 623(May), 129749. https://doi.org/10.1016/j.jhydrol.2023.129749

Dwiyanti, N. E., Irnanda, V., N, E. S., Palupi, I. R., & Raharjo, W. (2020). Analisi Hubungan Magnitudo Gempa Bumi Terhadap Hasil Frekuensi Dominan Pada Rangkaian Gempa Aceh Upaya Mitigasi Bencana. Jurnal Meteorologi Klimatologi dan Geofisika. 7(3), 44–50. Retrieved from https://jurnal.stmkg.ac.id/index.php/jmkg/article/view/203

Elbshbeshi, A., Gomaa, A., Mohamed, A., Othman, A., & Ghazala, H. (2022). Seismic hazard evaluation by employing microtremor measurements for Abu Simbel area, Aswan, Egypt. In Journal of African Earth Sciences, 196, 104734. https://doi.org/10.1016/j.jafrearsci.2022.104734

Esquivel-Mendiola, L. I., Calò, M., Tramelli, A., & Figueroa-Soto, A. (2022). Optimization of local scale seismic networks applied to geothermal fields. The case of the Acoculco caldera, Mexico. Journal of South American Earth Sciences, 119. https://doi.org/10.1016/j.jsames.2022.103995

Ferrario, E., Poulos, A., Castro, S., de la Llera, J. C., & Lorca, A. (2022). Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks. Reliability Engineering and System Safety, 217, 108040. https://doi.org/10.1016/j.ress.2021.108040

Foytong, P., & Ornthammarath, T. (2020). Empirical seismic fragility functions based on field survey data after the 5 May 2014 Mae Lao (Northern Thailand) earthquake. International Journal of Disaster Risk Reduction, 42, 101344. https://doi.org/10.1016/j.ijdrr.2019.101344

Gajek, W., & Malinowski, M. (2021). Errors in microseismic events locations introduced by neglecting anisotropy during velocity model calibration in downhole monitoring. Journal of Applied Geophysics, 184. https://doi.org/10.1016/j.jappgeo.2020.104222

Gori, F., Paternoster, M., Barbieri, M., Buttitta, D., Caracausi, A., Parente, F., Sulli, A., & Petitta, M. (2023). Hydrogeochemical multi-component approach to assess fluids upwelling and mixing in shallow carbonate-evaporitic aquifers (Contursi area, southern Apennines, Italy). Journal of Hydrology, 618, 129258. https://doi.org/10.1016/j.jhydrol.2023.129258

Guglielmi, Y., McClure, M., Burghardt, J., Morris, J. P., Doe, T., Fu, P., Knox, H., Vermeul, V., Kneafsey, T., Ajo-Franklin, J., Baumgartner, T., Beckers, K., Blankenship, D., Bonneville, A., Boyd, L., Brown, S., Burghardt, J. A., Chai, C., Chakravarty, A., … Zoback, M. D. (2023). Using in-situ strain measurements to evaluate the accuracy of stress estimation procedures from fracture injection/shut-in tests. International Journal of Rock Mechanics and Mining Sciences, 170. https://doi.org/10.1016/j.ijrmms.2023.105521

Hendra, H., Efendi, R., & Rusydi H., M. (2019). Estimasi Karakteristik Dinamis Bawah Permukaan Menggunakan Refraksi Mikrotremor di Kota Palu. Gravitasi, 18(1), 57–66. https://doi.org/10.22487/gravitasi.v18i1.13310

Hofmann, H., Zimmermann, G., Huenges, E., Regenspurg, S., Aldaz, S., Milkereit, C., Heimann, S., Dahm, T., Zang, A., Grigoli, F., Karvounis, D., Broccardo, M., Wiemer, S., Hjörleifsdóttir, V., Kristjánsson, B. R., Hersir, G. P., Ãsgeirsdóttir, R. S., Magnússon, R., & Ãrnadóttir, S. (2021). Soft stimulation treatment of geothermal well RV-43 to meet the growing heat demand of Reykjavik. Geothermics, 96, 102146. https://doi.org/10.1016/j.geothermics.2021.102146

Hopp, C., Sewell, S., Mroczek, S., Savage, M., & Townend, J. (2019). Seismic Response to Injection Well Stimulation in a High-Temperature, High-Permeability Reservoir. Geochemistry, Geophysics, Geosystems, 20(6), 2848–2871. https://doi.org/10.1029/2019GC008243

Hopp, C., Sewell, S., Mroczek, S., Savage, M., & Townend, J. (2020). Seismic response to evolving injection at the Rotokawa geothermal field, New Zealand. Geothermics, 85, 101750. https://doi.org/10.1016/j.geothermics.2019.101750

Jun, S. C., Jung, D. I., Lee, C. H., & Cho, B. H. (2023). Experimental and numerical investigation of seismic response of access floors based on shake-table tests using 2-story steel moment frame. Journal of Building Engineering, 77(July), 107474. https://doi.org/10.1016/j.jobe.2023.107474

Keil, S., Wassermann, J., & Megies, T. (2022). Estimation of ground motion due to induced seismicity at a geothermal power plant near Munich, Germany, using numerical simulations. Geothermics, 106, 102577. https://doi.org/10.1016/j.geothermics.2022.102577

Kim, K. Il, Min, K. B., Kim, K. Y., Choi, J. W., Yoon, K. S., Yoon, W. S., Yoon, B., Lee, T. J., & Song, Y. (2018). Protocol for induced microseismicity in the first enhanced geothermal systems project in Pohang, Korea. Renewable and Sustainable Energy Reviews, 91, 1182–1191. https://doi.org/10.1016/j.rser.2018.04.062

Kinscher, J. L., Broothaers, M., Schmittbuhl, J., de Santis, F., Laenen, B., & Klein, E. (2023). First insights to the seismic response of the fractured Carboniferous limestone reservoir at the Balmatt geothermal doublet (Belgium). Geothermics, 107, 102585. https://doi.org/10.1016/j.geothermics.2022.102585

Kowsari, M., Halldorsson, B., Snæbjörnsson, J., & Jónsson, S. (2021). Effects of different empirical ground motion models on seismic hazard maps for North Iceland. Soil Dynamics and Earthquake Engineering, 148, 106513. https://doi.org/10.1016/j.soildyn.2020.106513

Li, B., Xu, N., Xiao, P., Xia, Y., Zhou, X., Gu, G., & Yang, X. (2023). Microseismic monitoring and forecasting of dynamic disasters in underground hydropower projects in southwest China: A review. Journal of Rock Mechanics and Geotechnical Engineering, 15(8), 2158–2177. https://doi.org/10.1016/j.jrmge.2022.10.017

Liu, X., Jin, Y., & Lin, B. (2022). Classification and evaluation for stimulated reservoir volume (SRV) estimation models using microseismic events based on three typical grid structures. Journal of Petroleum Science and Engineering, 211, 110169. https://doi.org/10.1016/j.petrol.2022.110169

Lobos Lillo, D., Delgado, F., Pritchard, M. E., Cardona, C., Franco, L., Pedreros, G., & Amigo, A. (2023). Documenting surface deformation at the first geothermal power plant in South America (Cerro Pabellón, Chile) by satellite InSAR time-series. Journal of Volcanology and Geothermal Research, 441, 107869. https://doi.org/10.1016/j.jvolgeores.2023.107869

Mahjour, S. K., & Faroughi, S. A. (2023). Risks and uncertainties in carbon capture , transport , and storage projects : A comprehensive review. Gas Science and Engineering, 119, 205117. https://doi.org/10.1016/j.jgsce.2023.205117

Maimun, A. K., Silvia, U. N., & Ariyanto, P. (2020). Analisis Indeks Kerentanan Seismik, Periode Dominan, Dan Faktor Amplifikasi Menggunakan Metode Hvsr Di Stageof Tangerang. Jurnal Meteorologi Klimatologi dan Geofisika, 7(2), 24-30. Retrieved from https://jurnal.stmkg.ac.id/index.php/jmkg/article/view/194

Majidi Nezhad, M., Nastasi, B., Groppi, D., Lamagna, M., Piras, G., & Astiaso Garcia, D. (2021). Green Energy Sources Assessment Using Sentinel-1 Satellite Remote Sensing. Frontiers in Energy Research, 9, 1–20. https://doi.org/10.3389/fenrg.2021.649305

Menna, C., Felicioni, L., Negro, P., Lupíšek, A., Romano, E., Prota, A., & Hájek, P. (2022). Review of methods for the combined assessment of seismic resilience and energy efficiency towards sustainable retrofitting of existing European buildings. Sustainable Cities and Society, 77. https://doi.org/10.1016/j.scs.2021.103556

Midzi, V., Pule, T., Manzunzu, B., Mulabisana, T., Zulu, B. S., & Myendeki, S. (2020). Improved earthquake location in the gold mining regions of south africa using new velocity models. South African Journal of Geology, 123(1), 35–58. https://doi.org/10.25131/sajg.123.0008

Mihaylov, A., El Naggar, H., Mihaylov, D., & Dineva, S. (2019). Approximate analytical HVSR curve using multiple band-pass filters and potential applications. Soil Dynamics and Earthquake Engineering, 127, 105840. https://doi.org/10.1016/j.soildyn.2019.105840

Nibe, T., & Matsushima, J. (2021). Monitoring of seismic attenuation change associated with vapor-liquid phase transition using time-lapse reflection seismic data in Kakkonda geothermal field, Japan. Geothermics, 91, 102034. https://doi.org/10.1016/j.geothermics.2020.102034

Núñez, D., Núñez-Cornú, F. J., & Rowe, C. A. (2022). Recent seismicity at Ceboruco Volcano (Mexico). Journal of Volcanology and Geothermal Research, 421. https://doi.org/10.1016/j.jvolgeores.2021.107451

Okamoto, K., Imanishi, K., & Asanuma, H. (2022). Structures and fluid flows inferred from the microseismic events around a low-resistivity anomaly in the Kakkonda geothermal field, Northeast Japan. Geothermics, 100, 102320. https://doi.org/10.1016/j.geothermics.2021.102320

Ramirez, R. A., Lee, G. J., Choi, S. K., Kwon, T. H., Kim, Y. C., Ryu, H. H., Kim, S., Bae, B., & Hyun, C. (2022). Monitoring of construction-induced urban ground deformations using Sentinel-1 PS-InSAR: The case study of tunneling in Dangjin, Korea. International Journal of Applied Earth Observation and Geoinformation, 108, 102721. https://doi.org/10.1016/j.jag.2022.102721

Ryu, H. S., Kim, H., Lee, J. Y., Kaown, D., & Lee, K. K. (2022). Abnormal groundwater levels and microbial communities in the Pohang Enhanced Geothermal System site wells pre- and post-Mw 5.5 earthquake in Korea. Science of the Total Environment, 810, 152305. https://doi.org/10.1016/j.scitotenv.2021.152305

Sevilla, W. I., Jumawan, L. A., Clarito, C. J., Quintia, M. A., Dominguiano, A. A., & Solidum, R. U. (2020). Improved 1D velocity model and deep long-period earthquakes in Kanlaon Volcano, Philippines: Implications for its magmatic system. Journal of Volcanology and Geothermal Research, 393, 106793. https://doi.org/10.1016/j.jvolgeores.2020.106793

Shim, H. J., Kim, J., Cheon, M. S., & Pak, S. (2023). A comparison study on the derivation of in-structure FRS during seismic events for application of ITER upper port 18. Fusion Engineering and Design, 191, 113771. https://doi.org/10.1016/j.fusengdes.2023.113771

Sungkowo, A. (2018). Perhitungan Nilai Percepatan Tanah Maksimum Berdasar Rekaman Sinyal Accelerograph di Stasiun Pengukuran UNSO Surakarta. Indonesian Journal of Applied Physics, 8(1), 43. https://doi.org/10.13057/ijap.v8i1.14326

Suzuki, Y., Akatsuka, T., Yamaya, Y., Watanabe, N., Okamoto, K., Osato, K., Kajiwara, T., Ogawa, Y., Mogi, T., Tsuchiya, N., & Asanuma, H. (2022). Estimation of an ultra-high-temperature geothermal reservoir model in the Kakkonda geothermal field, northeastern Japan. Geothermics, 105, 102525. https://doi.org/10.1016/j.geothermics.2022.102525

Tang, S., Li, J., Tang, L., & Zhang, L. (2023). Microseismic monitoring and experimental study on rockburst in water-rich area of tunnel. Tunnelling and Underground Space Technology, 141, 105366. https://doi.org/10.1016/j.tust.2023.105366

Tao, J., Shi, A. C., Li, H. T., Zhou, J. W., Yang, X. G., & Lu, G. Da. (2021). Thermal-mechanical modelling of rock response and damage evolution during excavation in prestressed geothermal deposits. International Journal of Rock Mechanics and Mining Sciences, 147, 104913. https://doi.org/10.1016/j.ijrmms.2021.104913

Toledo, T., Obermann, A., Verdel, A., Martins, J. E., Jousset, P., Mortensen, A. K., Erbas, K., & Krawczyk, C. M. (2022). Ambient seismic noise monitoring and imaging at the Theistareykir geothermal field (Iceland). Journal of Volcanology and Geothermal Research, 429, 107590. https://doi.org/10.1016/j.jvolgeores.2022.107590

Utama, W., Warnana, D. D., & Garini, S. A. (2020). Identification of Micro-Earthquake Hypocentre using Geiger and Coupled Velocity-Hypocentre Methods. International Journal on Advanced Science, Engineering and Information Technology, 11(1), 350–355. https://doi.org/10.18517/ijaseit.11.1.10589

Wamriew, D., Charara, M., & Pissarenko, D. (2022). Joint event location and velocity model update in real-time for downhole microseismic monitoring: A deep learning approach. Computers and Geosciences, 158, 104965. https://doi.org/10.1016/j.cageo.2021.104965

Xie, J., Wang, J., & Liu, X. (2021). The role of fracture networks randomness in thermal utilization of enhanced geothermal system. International Communications in Heat and Mass Transfer, 126, 105414. https://doi.org/10.1016/j.icheatmasstransfer.2021.105414

Yoo, H., Park, S., Xie, L., Kim, K. Il, Min, K. B., Rutqvist, J., & Rinaldi, A. P. (2021). Hydro-mechanical modeling of the first and second hydraulic stimulations in a fractured geothermal reservoir in Pohang, South Korea. Geothermics, 89, 101982. https://doi.org/10.1016/j.geothermics.2020.101982

Yue, G., Li, X., & Zhang, W. (2023). Risk assessment of earthquakes induced during HDR development: A case study in the Gonghe Basin, Qinghai Province, China. Geothermics, 111, 102721. https://doi.org/10.1016/j.geothermics.2023.102721

Zhang, C., Peng, Z., Liu, X., & Li, C. (2023). Spatio-temporal variations of shallow seismic velocity changes in Salton Sea Geothermal Field, California in response to large regional earthquakes and long-term geothermal activities. Earthquake Research Advances, 3(2), 100178. https://doi.org/10.1016/j.eqrea.2022.100178

Zhou, Y., Yue, H., Zhou, S., Fang, L., Zhou, Y., Xu, L., Liu, Z., Wang, T., Zhao, L., & Ghosh, A. (2022). Microseismicity along Xiaojiang Fault Zone (Southeastern Tibetan Plateau) and the characterization of interseismic fault behavior. Tectonophysics, 833, 229364. https://doi.org/10.1016/j.tecto.2022.229364

Author Biographies

Widya Utama, Institut Teknologi Sepuluh Nopember

Rista Fitri Indriani, Department of Geomatics Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

Sherly Ardhya Garini, Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

License

Copyright (c) 2023 Widya Utama, Rista Fitri Indriani, Sherly Ardhya Garini

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).