Antidiabetic Molecular Mechanisms of Active Compounds from Several Orchids
DOI:
10.29303/jppipa.v9i8.3940Published:
2023-08-25Issue:
Vol. 9 No. 8 (2023): AugustKeywords:
Active compound, Antidiabetic, Mechanism, OrchidReview
Downloads
How to Cite
Downloads
Metrics
Abstract
Hyperglycemia condition that leads to diabetes causes various complications. Various active compounds from plants have been studied for their antidiabetic abilities. One of them is the orchid plant. Besides being used as decoration, orchids contain several active compounds that have been proven to be used in medicine, including diabetes. This article discusses the antidiabetic mechanism of several active compounds obtained from orchids. Publication regarding orchid plant for diabetes were found in databases such as PubMed, Google Scholar, Wiley, Science Direct, Medline, Scopus, and Springer. Keywords used in this study were “orchidâ€, “diabetesâ€, “hyperglycemiaâ€, “compound†and “herbalâ€. Out of the 447 collected articles (published in the period between 2011 and 2022), 416 were excluded due to non-relevant studies. There were 31 eligible studies included in this article. In conclusion, the antidiabetic mechanisms of the orchid extracts were as antioxidant, anti-inflammatory and anti-glycation agents, increasing insulin action, influencing lipid metabolism, and inhibiting α‑amylase and α‑glucosidase activity. Â
References
Abdel-Halim, A. H., Fyiad, A. A. A., Aboulthana, W. M., El-Sammad, N. M., Youssef, A. M., & Ali, M. M. (2020). Assessment of the anti-diabetic effect of Bauhinia variegata gold nano-extract against streptozotocin induced diabetes mellitus in rats. Journal of Applied Pharmaceutical Science, 10(5), 77–91. https://doi.org/10.7324/JAPS.2020.10511
Ahmed, O. A. A., Azhar, A. S., Tarkhan, M. M., Balamash, K. S., & El-Bassossy, H. M. (2020). Antiglycation Activities and Common Mechanisms Mediating Vasculoprotective Effect of Quercetin and Chrysin in Metabolic Syndrome. Evidence-Based Complementary and Alternative Medicine, 2020. https://doi.org/10.1155/2020/3439624
Alsawalha, M., Al-Subaei, A., Al-Jindan, R., Bolla, S., Sen, D., Balakrishna, J., Ravi, P., Reddy Gollapalli, S., Veeraraghavan, V., Pillai, A., Joseph, J., Salahuddin, M., & Mohan, S. (2019). Anti-diabetic activities of Dactylorhiza hatagirea leaf extract in 3T3-L1 cell line model. Pharmacognosy Magazine, 15(64), 212. https://doi.org/10.4103/pm.pm_8_19
Arzoo, S. H., Chattopadhyay, K., Banerjee, S., & Chattopadhyay, B. (2018). Synergistic improved efficacy of Gymnadenia orchidis root Salep and pumpkin seed on induced diabetic complications. Diabetes Research and Clinical Practice, 146, 278–288. https://doi.org/10.1016/j.diabres.2018.10.025
Ashu Rajeshbhai, V., & Ingalhalli, R. (2022). A Review Article on: An Overview of Medicinal Importance of Orchids. Acta Scientific Medical Sciences, 6(7), 28–36.
Barragán-Zarate, G. S., Alexander-Aguilera, A., Lagunez-Rivera, L., Solano, R., & Soto-RodrÃguez, I. (2021). Bioactive compounds from Prosthechea karwinskii decrease obesity, insulin resistance, pro-inflammatory status, and cardiovascular risk in Wistar rats with metabolic syndrome. Journal of Ethnopharmacology, 279. https://doi.org/10.1016/j.jep.2021.114376
Barragán-Zarate, G. S., Lagunez-Rivera, L., Solano, R., Pineda-Peña, E. A., Landa-Juárez, A. Y., Chávez-Piña, A. E., Carranza-Ãlvarez, C., & Hernández-Benavides, D. M. (2020). Prosthechea karwinskii, an orchid used as traditional medicine, exerts anti-inflammatory activity and inhibits ROS. Journal of Ethnopharmacology, 253. https://doi.org/10.1016/j.jep.2020.112632
Chang, C. L. T., Lin, Y., Bartolome, A. P., Chen, Y. C., Chiu, S. C., & Yang, W. C. (2013). Herbal therapies for type 2 diabetes mellitus: Chemistry, biology, and potential application of selected plants and compounds. In Evidence-based Complementary and Alternative Medicine (Vol. 2013). https://doi.org/10.1155/2013/378657
Choudhury, H., Pandey, M., Hua, C. K., Mun, C. S., Jing, J. K., Kong, L., Ern, L. Y., Ashraf, N. A., Kit, S. W., Yee, T. S., Pichika, M. R., Gorain, B., & Kesharwani, P. (2018). An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of Traditional and Complementary Medicine, 8(3), 361–376. https://doi.org/10.1016/J.JTCME.2017.08.012
Choukarya, R., Choursia, A., & Rathi, J. (2019). In Vivo and In Vitro Antidiabetic Activity of Hydroalcoholic Extract of Dactylorhiza Hatagirea Roots: An Evaluation of Possible Phytoconstituents. Journal of Drug Delivery and Therapeutics, 9(6-s), 76–81. https://doi.org/10.22270/jddt.v9i6-s.3752
Di Sotto, A., Locatelli, M., Macone, A., Toniolo, C., Cesa, S., Carradori, S., Eufemi, M., Mazzanti, G., & Di Giacomo, S. (2019). Hypoglycemic, antiglycation, and cytoprotective properties of a phenol-rich extract from waste peel of punica granatum L. Var. Dente di cavallo DC2. Molecules, 24(17). https://doi.org/10.3390/molecules24173103
Francenia Santos-Sánchez, N., Salas-Coronado, R., Villanueva-Cañongo, C., & Hernández-Carlos, B. (2019). Antioxidant Compounds and Their Antioxidant Mechanism. In Antioxidants. IntechOpen. https://doi.org/10.5772/intechopen.85270
Gutierrez, P., & Hoyo-Vadillo, C. (2011). Anti-diabetic activity of an hexane extract of Prosthechea michuacanain in streptozotocin-induced diabetic rats. BoletÃn Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas, 10(6), 570–580. Retrieved from www.blacpma.usach.cl
Gutierrez, R. M. P. (2013). Evaluation of the Hypoglycemic and Hypolipidemic Effects of Triterpenoids from Prosthechea michuacana in Streptozotocin-induced Type 2 Diabetic Mice. Pharmacologia, 4, 170–179. Retrieved from https://scialert.net/fulltext/?doi=pharmacologia.2013.170.179
Haridas, R., P, S., & Thekkan, S. (2017). In-vitro antidiabetic activity of Malaxis rheedei SW (whole plant): an endangered medicinal orchid. International Journal of Pharma and Bio Sciences, 8(2). https://doi.org/10.22376/ijpbs.2017.8.2.p130-133
Hu, B., Ye, C., Leung, E. L. H., Zhu, L., Hu, H., Zhang, Z., Zheng, J., & Liu, H. (2020). Bletilla striata oligosaccharides improve metabolic syndrome through modulation of gut microbiota and intestinal metabolites in high fat diet-fed mice. Pharmacological Research, 159. https://doi.org/10.1016/j.phrs.2020.104942
Hunyadi, A. (2019). The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. In Medicinal Research Reviews (Vol. 39, Issue 6, pp. 2505–2533). John Wiley and Sons Inc. https://doi.org/10.1002/med.21592
Inthongkaew, P., Chatsumpun, N., Supasuteekul, C., Kitisripanya, T., Putalun, W., Likhitwitayawuid, K., & Sritularak, B. (2017). α-glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from dendrobium formosum. Revista Brasileira de Farmacognosia, 27(4), 480–487. https://doi.org/10.1016/j.bjp.2017.05.005
Jagtap, S., Narkhede, A., Nirmal, P., Tupe, R., Kulkarni, O., & Harsulkar, A. (2012). In vitro Antioxidant, Antiglycation and α-amylase inhibitory potential of Eulophia ochreata L. Journal of Pharmacy Research, 5(5), 2532–2537. Retrieved from www.jpronline.info
Ji, M., Gong, X., Li, X., Wang, C., & Li, M. (2020). Advanced research on the antioxidant activity and mechanism of polyphenols from hippophae species-a review. In Molecules (Vol. 25, Issue 4). MDPI AG. https://doi.org/10.3390/molecules25040917
Joshi, P. R., Paudel, M. R., Chand, M. B., Pradhan, S., Pant, K. K., Joshi, G. P., Bohara, M., Wagner, S. H., Pant, B., & Pant, B. (2020). Cytotoxic effect of selected wild orchids on two different human cancer cell lines. Heliyon, 6(5). https://doi.org/10.1016/j.heliyon.2020.e03991
Jung, E., Park, S. Bin, Jung, W. K., Kim, H. R., & Kim, J. (2019). Antiglycation activity of aucubin in vitro and in exogenous methylglyoxal injected rats. Molecules, 24(20). https://doi.org/10.3390/molecules24203653
Kaabi, Y. A. (2022). Potential Roles of Anti-Inflammatory Plant-Derived Bioactive Compounds Targeting Inflammation in Microvascular Complications of Diabetes. In Molecules (Vol. 27, Issue 21). MDPI. https://doi.org/10.3390/molecules27217352
Khadayat, K., Marasini, B. P., Gautam, H., Ghaju, S., & Parajuli, N. (2020). Evaluation of the alpha-amylase inhibitory activity of Nepalese medicinal plants used in the treatment of diabetes mellitus. Clinical Phytoscience, 6(1). https://doi.org/10.1186/s40816-020-00179-8
Khouri, N. A., & Daradka, H. (2013). Antidiabetic effect of Orchis anatolica root extracts on alloxan-induced diabetic rats. Comparative Clinical Pathology, 22(3), 347–354. https://doi.org/10.1007/s00580-012-1415-8
Kong, M., Xie, K., Lv, M., Li, J., Yao, J., Yan, K., Wu, X., Xu, Y., & Ye, D. (2021). Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomedicine & Pharmacotherapy, 133, 110975. https://doi.org/10.1016/J.BIOPHA.2020.110975
Kooti, W., Farokhipour, M., Asadzadeh, Z., Ashtary-Larky, D., & Asadi-Samani, M. (2016). The role of medicinal plants in the treatment of diabetes: a systematic review. Electronic Physician, 8(1), 1832–1842. https://doi.org/10.19082/1832
Kotiloğlu, D., Acet, T., & Özcan, K. (2020). Phytochemical profile and biological activity of a therapeutic orchid from Anatolia: Dactylorhiza romana subsp. georgica. Journal of Food Measurement and Characterization, 14(6), 3310–3318. https://doi.org/10.1007/s11694-020-00566-2
Kuo, Y. J., Pei, J. K., & Chao, W. W. (2022). Pharmacological and Chemical Potential of Spiranthes sinensis (Orchidaceae): A Narrative Review. In Plants (Vol. 11, Issue 13). MDPI. https://doi.org/10.3390/plants11131692
Kwon, S.-U., Jeon, S.-B., Xin, M., Kim, J.-H., Im, J.-Y., Cha, J.-Y., Jee, H.-K., Lee, O.-G., Kim, D.-K., & Lee, Y.-M. (2012). Inhibitory Effects of Fermented Gastrodia elata on High Glucose-induced NO and IL-8 Production in Human Umbilical Vein Endothelial Cells. In Natural Product Sciences (Vol. 18, Issue 4). Retrieved from https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE11129699
Li, C. (2021). Constituents of the Flower of Maxillaria tenuifolia and Their Anti-Diabetic Activity. Records of Natural Products, 1, 1–6. https://doi.org/10.25135/rnp.274.2106.2093
Li, J., Bai, L., Wei, F., Zhao, J., Wang, D., Xiao, Y., Yan, W., & Wei, J. (2019). Therapeutic mechanisms of herbal medicines against insulin resistance: A review. In Frontiers in Pharmacology (Vol. 10, Issue JUN). Frontiers Media S.A. https://doi.org/10.3389/fphar.2019.00661
Li, M., Chi, X., Wang, Y., Setrerrahmane, S., Xie, W., & Xu, H. (2022). Trends in insulin resistance: insights into mechanisms and therapeutic strategy. In Signal Transduction and Targeted Therapy (Vol. 7, Issue 1). Springer Nature. https://doi.org/10.1038/s41392-022-01073-0
Li, Q., Chen, J., Li, Y., Chen, T., Zou, J., & Wang, H. (2017). Effect of polysaccharide of dendrobium candidum on proliferation and apoptosis of human corneal epithelial cells in high glucose. Medicine (United States), 96(32). https://doi.org/10.1097/MD.0000000000007773
Lianza, M., Poli, F., Nascimento, A. M. do, Soares da Silva, A., da Fonseca, T. S., Toledo, M. V., Simas, R. C., Chaves, A. R., Leitão, G. G., & Leitão, S. G. (2022). In vitro α-glucosidase inhibition by Brazilian medicinal plant extracts characterised by ultra-high performance liquid chromatography coupled to mass spectrometry. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 554–562. https://doi.org/10.1080/14756366.2021.2022658
Mahomoodally, M. F., Marie Carene, M. C. N., Zengin, G., Eulogio, E. J., Abdullah, H. H., Ak, G., Senkardes, I., Chiavaroli, A., Menghini, L., Recinella, L., Brunetti, L., Leone, S., Orlando, G., & Ferrante, C. (2020). Phytochemical analysis, network pharmacology and in silico investigations on anacamptis pyramidalis tuber extracts. Molecules, 25(10). https://doi.org/10.3390/molecules25102422
Martha, E., & Rahayu, D. (2022). Review of the conservation efforts of orchid species in Bogor Botanic Gardens. Orchid Phytogeography View project. Proceedings of the 2021 Virtual World Orchid Conference. Retrieved from https://www.researchgate.net/publication/359104195
Martha Pérez Gutiérrez, R. (2010). Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology. Journal of Medicinal Plants Research, 4(8), 592–638. https://doi.org/10.5897/JMPR10.012
Minh, T. N., Khang, D. T., Tuyen, P. T., Minh, L. T., Anh, L. H., Van Quan, N., Ha, P. T. T., Quan, N. T., Toan, N. P., Elzaawely, A. A., & Xuan, T. D. (2016). Phenolic compounds and antioxidant activity of phalaenopsis orchid hybrids. Antioxidants, 5(3). https://doi.org/10.3390/antiox5030031
Mukherjee, S., Jagtap, S., Vidyapeeth, B., & Tupe, R. (2012). Antiglycation and antioxidant activity of a rare medicinal orchid Dendrobium aqueum Lindl. In Medicinal Chemistry & Drug Discovery (Vol. 2012, Issue 2). Retrieved from https://www.researchgate.net/publication/235751078
Musharof Hossain, M. (2011). Therapeutic orchids: traditional uses and recent advances—An overview. Fitoterapia, 82(2), 102–140. https://doi.org/10.1016/J.FITOTE.2010.09.007
Nam, W., Nam, S. H., Kim, S. P., Levin, C., & Friedman, M. (2019). Anti-adipogenic and anti-obesity activities of purpurin in 3T3-L1 preadipocyte cells and in mice fed a high-fat diet. BMC Complementary and Alternative Medicine, 19(1). https://doi.org/10.1186/s12906-019-2756-5
Nawaz, H., Shad, M. A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56. https://doi.org/10.1590/s2175-97902019000417129
Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986–28006. https://doi.org/10.1039/c4ra13315c
Ogunyemi, O. M., Gyebi, G. A., Saheed, A., Paul, J., Nwaneri-Chidozie, V., Olorundare, O., Adebayo, J., Koketsu, M., Aljarba, N., Alkahtani, S., Batiha, G. E. S., & Olaiya, C. O. (2022). Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth. Frontiers in Molecular Biosciences, 9. https://doi.org/10.3389/fmolb.2022.866719
Oso, B. J., & Olaoye, I. F. (2020). Antiglycaemic potentials and molecular docking studies of the extracts of Cassia alata L. Beni-Suef University Journal of Basic and Applied Sciences, 9(1). https://doi.org/10.1186/s43088-020-00068-6
Ottah, A. A., Augustine, O., Obiora, I. O., & Maxwell, E. (2012). Antihyperglycemic effects of the methanol leaf extract of Diaphananthe bidens in normoglycemic and streptozotocin-induced hyperglycemic rats Asian Pacific Journal of Tropical Medicine Diaphananthe bidens Streptozotocin Tolbutamide Normoglycaemic Hyperglycemic. In Asian Pacific Journal of Tropical Medicine. Retrieved from www.elsevier.com/locate/apjtm
Pan, L. H., Li, X. F., Wang, M. N., Zha, X. Q., Yang, X. F., Liu, Z. J., Luo, Y. B., & Luo, J. P. (2014). Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different dendrobium species. International Journal of Biological Macromolecules, 64, 420–427. https://doi.org/10.1016/j.ijbiomac.2013.12.024
Paudel, M. R., Chand, M. B., Pant, B., & Pant, B. (2019). Assessment of antioxidant and cytotoxic activities of extracts of Dendrobium crepidatum. Biomolecules, 9(9). https://doi.org/10.3390/biom9090478
Peng, Y., Gao, Y., Zhang, X., Zhang, C., Wang, X., Zhang, H., Wang, Z., Liu, Y., & Zhang, H. (2019). Antidiabetic and hepatoprotective activity of the roots of Calanthe fimbriata Franch. Biomedicine and Pharmacotherapy, 111, 60–67. https://doi.org/10.1016/j.biopha.2018.12.066
Petersen, M. C., & Shulman, G. I. (2018). Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev, 98, 2133–2223. https://doi.org/10.1152/physrev
Rabbani, N., & Thornalley, P. J. (2021). Protein glycation – biomarkers of metabolic dysfunction and early-stage decline in health in the era of precision medicine. Redox Biology, 42. https://doi.org/10.1016/j.redox.2021.101920
Rojas-Olivos, A., Solano-Gómez, R., Alexander-Aguilera, A., Jiménez-Estrada, M., Zilli-Hernández, S., & Lagunez-Rivera, L. (2017). Effect of Prosthechea karwinskii (Orchidaceae) on obesity and dyslipidemia in Wistar rats. Alexandria Journal of Medicine, 53(4), 311–315. https://doi.org/10.1016/j.ajme.2016.11.004
Rungruchkanont, K., & Chatsuwan, Y. (2019). Antioxidant and α-glucosidase inhibitor activities of Grammatophyllum speciosum Blume. Acta Horticulturae, 1245, 73–78. https://doi.org/10.17660/ActaHortic.2019.1245.11
Safari, M. R., Azizi, O., Heidary, S. S., Kheiripour, N., & Ravan, A. P. (2018). Antiglycation and antioxidant activity of four Iranian medical plant extracts. Journal of Pharmacopuncture, 21(2), 82–89. https://doi.org/10.3831/KPI.2018.21.010
Salleh, N. H., Zulkipli, I. N., Mohd Yasin, H., Ja’Afar, F., Ahmad, N., Wan Ahmad, W. A. N., & Ahmad, S. R. (2021). Systematic Review of Medicinal Plants Used for Treatment of Diabetes in Human Clinical Trials: An ASEAN Perspective. In Evidence-based Complementary and Alternative Medicine (Vol. 2021). Hindawi Limited. https://doi.org/10.1155/2021/5570939
San, H. T., Boonsnongcheep, P., Putalun, W., Mekboonsonglarp, W., Sritularak, B., & Likhitwitayawuid, K. (2020). α-Glucosidase Inhibitory and Glucose Uptake Stimulatory Effects of Phenolic Compounds From Dendrobium christyanum. Natural Product Communications, 15(3). https://doi.org/10.1177/1934578X20913453
Sindhuja, A., Vimalavathini, R. R., & Kavimani, S. (2021). In Silico Docking Studies of Antiglycation Activity of Isorhamnetin on Molecular Proteins of Advanced Glycation End Product (AGE) Pathway. Biomedical and Pharmacology Journal, 14(4), 2299–2306. https://doi.org/10.13005/bpj/2331
Singh, S., Singh, A. K., Kumar, S., Kumar, M., Pandey, P. K., & Singh, M. C. K. (2012). Medicinal properties and uses of orchids: a concise review. Elixir Appl. Botany, 52(2012), 11627–11634. Retrieved from https://www.researchgate.net/publication/292131192
Thant, M. T., Chatsumpun, N., Mekboonsonglarp, W., Sritularak, B., & Likhitwitayawuid, K. (2020). New Fluorene Derivatives from Dendrobium gibsonii and Their α-Glucosidase Inhibitory Activity. Molecules (Basel, Switzerland), 25(21). https://doi.org/10.3390/molecules25214931
Thant, M. T., Khine, H. E. E., Nealiga, J. Q. L., Chatsumpun, N., Chaotham, C., Sritularak, B., & Likhitwitayawuid, K. (2022). α-Glucosidase Inhibitory Activity and Anti-Adipogenic Effect of Compounds from Dendrobium delacourii. Molecules, 27(4). https://doi.org/10.3390/molecules27041156
Thant, M. T., Sritularak, B., Chatsumpun, N., Mekboonsonglarp, W., Punpreuk, Y., & Likhitwitayawuid, K. (2021). Three novel biphenanthrene derivatives and a new phenylpropanoid ester from aerides multiflora and their αâ€glucosidase inhibitory activity. Plants, 10(2), 1–14. https://doi.org/10.3390/plants10020385
Tsering, J., Tam, N., Tag, H., Gogoi, B. J., & Apang, O. (2017). Medicinal Orchids of Arunachal Pradesh: A Review. Bulletin of Arunachal Forest Research, 32(2), 1–16. Retrieved from https://rb.gy/j5v7w
Yang, J., Chen, H., Nie, Q., Huang, X., & Nie, S. (2020). Dendrobium officinale polysaccharide ameliorates the liver metabolism disorders of type II diabetic rats. International Journal of Biological Macromolecules, 164, 1939–1948. https://doi.org/10.1016/j.ijbiomac.2020.08.007
Yeh, W. J., Hsia, S. M., Lee, W. H., & Wu, C. H. (2017). Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. Journal of Food and Drug Analysis, 25(1), 84–92. https://doi.org/10.1016/j.jfda.2016.10.017
Yulianti, E., Sunarti, & Wahyuningsih, M. S. H. (2021). The effect of Kappaphycus alvarezii fraction on plasma glucose, Advanced Glycation End-products formation, and renal RAGE gene expression. Heliyon, 7(1), e05978. https://doi.org/10.1016/j.heliyon.2021.e05978
Yulianti, E., Sunarti, & Wahyuningsih, M. S. H. (2022). The effect of Kappaphycus alvarezii active fraction on oxidative stress and inflammation in streptozotocin and nicotinamide-induced diabetic rats. BMC Complementary Medicine and Therapies, 22(1). https://doi.org/10.1186/s12906-021-03496-8
Zhang, M., Wu, J., Han, J., Shu, H., & Liu, K. (2018). Isolation of polysaccharides from Dendrobium officinale leaves and anti-inflammatory activity in LPS-stimulated THP-1 cells. Chemistry Central Journal, 12(1). https://doi.org/10.1186/s13065-018-0480-8
Author Biographies
Evy Yulianti, Universitas Negeri Yogyakarta
Ixora Sartika Mercuriani, Universitas Negeri Yogyakarta
Lili Sugiyarto, Universitas Negeri Yogyakarta
Tzou-Chi Huang, National Pingtung University of Science & Technology
License
Copyright (c) 2023 Evy Yulianti, Ixora Sartika Mercuriani, Lili Sugiyarto, Tzou-Chi Huang
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).