Probability of Finding Tritium Atom Electrons in Momentum Space with Principal Quantum Number n ≤ 3
DOI:
10.29303/jppipa.v11i2.4032Published:
2025-02-25Issue:
Vol. 11 No. 2 (2025): FebruaryKeywords:
Momentum probability, Momentum space, Tritium (_1^3)HResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
The tritium atom is an isotope of the hydrogen atom which only has one electron, so this research aims to determine the probability of finding a tritium atom electron ((_1^3)H) in momentum space with the principal quantum number n ≤ 3. This research is included in non-experimental research using literature study methods related to quantum mechanics. To determine the probability data for the electron momentum of the Tritium atom ((_1^3)H) numerical calculations were used using the Matlab R2021a program. The results obtained in this research are in the form of probability values for the electron momentum of the Tritium atom ((_1^3)H) which will provide an overview of the existence of electrons in the momentum space. Based on the research results, it can be shown that in momentum space, the probability of finding a Tritium atom electron increases as the principal quantum number (n) increases.
References
Aini, N. R., Irianto, I. D., Hamid, A. A., & Thompson, B. B. (2020). Sejarah Perkembangan Fisika (Kuantum) Dari Klasik Hingga Modern. Diktat Kuliah Termodinamika, 4(3), 22-32. Retrieved from https://shorturl.at/HFHUU
Ana, G., Cristescu, I., Draghia, M., Bucur, C., Balteanu, O., Vijulie, M., Popescu, G., Costeanu, C., Sofilca, N., Stefan, I., Daramus, R., Niculescu, A., Oubraham, A., Spiridon, I., Vasut, F., Moraru, C., Brad, S., & Pasca, G. (2016). Construction and commissioning of a hydrogen cryogenic distillation system for tritium recovery at ICIT Rm. Valcea. Fusion Engineering and Design, 106, 51–55. https://doi.org/10.1016/j.fusengdes.2016.03.057
Chamdani, M. N. (2022). Probabilitas & Statistika. Jurnal Statistika, 1–3. Retrieved from https://www.researchgate.net/publication/364316699_Probabilitas_Statistika
Damayanti, D. D., Supriadi, B., & Nuraini, La. (2019). Fungsi Gelombang Ion Helium ((_2^4)〖He〗^+ ) Pada Bilangan Kuantum Dalam Ruang Momentum. Seminar Nasional Pendidikan Fisika 2019, 4(1), 252–257. Retrieved from https://jurnal.unej.ac.id/index.php/fkip-epro/article/view/15178
Festiana, I. (2018). Perkembangan Eksperimen Fisika Ditinjau dari Filsafat Sains. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 2(1), 14–20. https://doi.org/10.30599/jipfri.v2i1.147
Hey, J. D. (1993). On the momentum representation of hydrogenic wave functions: Some properties and an application. American Journal of Physics, 61(1), 28–35. https://doi.org/10.1119/1.17405
Halim, A., & Herlina, F. (2020). Pengantar Fisika Kuantum (I). Syiah Kuala University Press.
Hutasoit, L. M., Ramdhan, A. M., Iskandar, I., & Arifin, A. (2021). Tritium: Implies Young Groundwater Age? Insight from the Isotope and Hydrochemical Data of Mud Volcano and Hydrocarbon Well in East Java. Jurnal Lingkungan Dan Bencana Geologi, 12(3), 149–158. https://doi.org/10.34126/jlbg.v12i3.388
Jesi, P. (2020). Prinsip Ketidakpastian Heisenberg Dalam Tinjauan Kemajuan Pengukuran Kuantum Di Abad 21. Journal Online of Physics, 5(2), 43–47. https://doi.org/10.22437/jop.v5i2.9049
Kharismawati, I., & Supriadi, B. (2021). Probabilitas Partikel Dalam Kotak Tiga Dimensi Pada Bilangan n≤5. Jurnal Pembelajaran Fisika, 1(1), 58–63. Retrieved from https://jurnal.unej.ac.id/index.php/JPF/article/view/23136
Krane, kenneth S. (2012). Fisika Modern. Jakarta: Universitas Indonesia.
Kruezi, U., Jachmich, S., Koslowski, H. R., Lehnen, M., Brezinsek, S., & Matthews, G. (2015). A new Disruption Mitigation System for deuterium-tritium operation at JET. Fusion Engineering and Design, 96–97, 286–289. https://doi.org/10.1016/j.fusengdes.2015.06.109
Lawless, R., Butler, B., Hollingsworth, A., Camp, P., & Shaw, R. (2017). Tritium plant technology development for a DEMO power plant. Fusion Science and Technology, 71(4), 679–686. https://doi.org/10.1080/15361055.2017.1290948
Magnotta, F., Herman, I. P., & Aldridge, F. T. (1982). Highly selective tritium-from-deuterium isotope separation by pulsed NH3 laser multiple-photon dissociation of chloroform. Chemical Physics Letters, 92(6), 600–605. https://doi.org/10.1016/0009-2614(82)83657-9
Makmum, M. S., Supriadi, B., & Prihandoko, T. (2020). Fungsi Gelombang Ion Helium Dalam Representasi. Jurnal Pembelajaran Fisika, 4(4), 152–159. Retrieved from https://jurnal.unej.ac.id/index.php/JPF/article/view/19955
Manik, J. T., Reynaldi, V., & Su’ud, Z. (2022). Perhitungan Energi Keadaan Dasar Atom Lithium Menggunakan Metode Variasional Dua Parameter. Jurnal Sains Dan Pendidikan Fisika, 18(3), 379–385. https://doi.org/10.35580/jspf.v18i3.32939
Mardiana, I., Prihandono, T., & Yushardi. (2019). Kajian Kestabilan Inti Unsur-Unsur Pada Proses Peluruhan Zat Radioaktif Dengan Pendekatan Energi Ikat Inti Model Tetes Cairan. Jurnal Pembelajaran Fisika, 8(2), 101–106. Retrieved from https://jurnal.unej.ac.id/index.php/JPF/article/view/15212
Nurokhim. (2014). Analisis Tritium dalam Air Laut Menggunakan LSC Tricarb 2910TR Melalui Proses Elektrolisis. Jurnal Teknologi Pengelolaan Limbah (Journal of Waste Management Technology), 17, 47–54. Retrieved from https://jurnal.batan.go.id/index.php/jtpl/article/view/1760
Podolsky, B., & Pauling, L. (1929). The momentum distribution in hydrogen-like atoms. Physical Review, 34(1), 109–116. https://doi.org/10.1103/PhysRev.34.109
Pratikha, A. R., Supriadi, B., & Handayani, R. D. (2022). Electron’s Position Expectation Values and Energy Spectrum of Lithium Ion (Li^(2+)) on Principal Quantum Number n≤3. Jurnal Penelitian Pendidikan IPA, 8(1), 252–256. https://doi.org/10.29303/jppipa.v8i1.840
Shaw, R. C. R., & Butler, B. (2019). Applicability of a cryogenic distillation system for D-T isotope rebalancing and protium removal in a DEMO power plant. Fusion Engineering and Design, 141(January), 59–67. https://doi.org/10.1016/j.fusengdes.2019.02.083
Shere, L., Hill, A. K., Mays, T. J., Lawless, R., Brown, R., & Perera, S. P. (2024). The next generation of low tritium hydrogen isotope separation technologies for future fusion power plants. International Journal of Hydrogen Energy, 55(August), 319–338. https://doi.org/10.1016/j.ijhydene.2023.10.282
Singh, R. B. (2009). Introduction To Modern Physics. New Age International (P) Limited.
Supriadi, Anggraeni, B., Faridah, F. K. A., Jannah, N., & Elsa, M. (2022). Fisika Kuantum. Jember university Press. https://doi.org/10.47492/eamal.v1i2.581
Supriadi, B., Mardhiana, H., Kristiawan, W. I., Kamalia, D., & Sari, I. K. (2023). Expected Value of Helium Ion Electron Momentum in Momentum Space with Primary Quantum Numbers n≤3. Jurnal Penelitian Pendidikan IPA, 9(10), 8467–8472. https://doi.org/10.29303/jppipa.v9i10.3861
Supriadi, B., Prastowo, S. H. B., Bahri, S., Ridlo, Z. R., & Prihandono, T. (2018). The Stark Effect on the Wave Function of Tritium in Relativistic Condition. Journal of Physics: Conference Series, 997(1). https://doi.org/10.1088/1742-6596/997/1/012045
Suyanta. (2019). Buku Ajar Kimia Unsur. UGM Press.
Syahrial, A., Sarjan, M., Rokhmat, J., Arizona, K., Sucilestari, R., Syahidi, K., Syamsuddin, S., & Mertha, I. G. (2022). Kebermaknaan Fisika Kuantum Sebagai Solusi Membangun Karakter Peserta Didik. Jurnal Ilmiah Profesi Pendidikan, 7(2b), 672–679. https://doi.org/10.29303/jipp.v7i2b.555
Utami, F., Supriadi, B., & Lesmono, A. D. (2019). Probabilitas posisi elektron dalam atom tritium pada bilangan kuantum n≤ 3. FKIP e-Proceeding, 4(1), 241-245. Retrieved from https://jurnal.unej.ac.id/index.php/fkip-epro/article/view/15176
Author Biographies
Bambang Supriadi, Universitas Jember
Hildatul Zannah, Universitas Jember
Salfa Zahroh Ahadah, Universitas Jember
Aminatus Sa’diah, Universitas Jember
Erika Divian Chandani, Universitas Jember
License
Copyright (c) 2025 Bambang Supriadi, Hildatul Zannah, Salfa Zahroh Ahadah, Aminatus Sa’diah, Erika Divian Chandani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).