Reconfiguration of Polarized Antennas for WLAN Applications

Authors

Filda Ayu Afrida , Fitri Yuli Zulkifli , Eko Tjipto Rahardjo

DOI:

10.29303/jppipa.v9i7.4138

Published:

2023-07-25

Issue:

Vol. 9 No. 7 (2023): July

Keywords:

Circular Polarization, Linear Polarization, Microstrip Antenna, Reconfiguration, U-slot, WLAN

Research Articles

Downloads

How to Cite

Afrida, F. A. ., Zulkifli, F. Y., & Rahardjo, E. T. (2023). Reconfiguration of Polarized Antennas for WLAN Applications. Jurnal Penelitian Pendidikan IPA, 9(7), 5745–5752. https://doi.org/10.29303/jppipa.v9i7.4138

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Wireless technology based on the IEEE 802.11 standard and in accordance with the KEMINFO 2019 regulations requires antennas that can adapt to changing environments. Microstrip antennas are a good solution to meet the current technological advancements because they have several advantages, such as a simple design, lightweight, easy manufacturing, and low cost. When designing a microstrip antenna, bandwidth parameters must be observed. The bandwidth of a microstrip antenna is narrow. In order to work properly, some simple techniques can be used to increase antenna bandwidth. This research proposes a reconfigurable microstrip antenna polarization using a U-slot at a frequency of (2.4– 2.485) GHz for WLAN applications. The proposed antenna reconfiguration utilizes two (2) switching mechanisms that can be turned on and off individually or simultaneously. The results of the simulation showed that Ant. 1 and Ant. 2 have a linear polarization (LP), Ant. 1 has a bandwidth of 85 MHz (2.399 – 2.484) GHz, and Ant.2 has a bandwidth of 87 MHz (2.398– 2.485) GHz, both with S-parameter values ≤-9.54 dB. Then, Ant. 3 has a right circular polarization with a bandwidth value of 124 MHz (2.397 – 2.484) GHz, and Ant. 4 has a left circular polarization with a bandwidth value of 87 MHz (2.398 – 2.485) GHz at the Axial Ratio (AR) limit of ≤ 3 dB.

References

Bansal, R. (2008). Antenna theory; analysis and design. Proceedings of the IEEE, 72(7), 989–990. https://doi.org/10.1109/proc.1984.12959

Biju, I. (2009). Ieee 802.11 Wireless Networks: Basic Concepts, Mobility Management and Security Enhancements. 136.

Boehmert, C., Verrender, A., Pauli, M., & Wiedemann, P. (2018). Does precautionary information about electromagnetic fields trigger nocebo responses? An experimental risk communication study. Environmental Health: A Global Access Science Source, 17(1). https://doi.org/10.1186/s12940-018-0377-y

Cakula, S., & Pratt, M. (2021). Communication technologies in a remote workplace. Baltic Journal of Modern Computing, 9(2). https://doi.org/10.22364/BJMC.2021.9.2.05

Effendi, M. R., Erta Lestari, S. G., Kurniawan, F., & Munir, A. (2018). Proximity Coupled Patch Array Antenna with Switchable Polarization for WLAN Application. Progress in Electromagnetics Research Symposium, 2018-Augus, 1092–1095. https://doi.org/10.23919/PIERS.2018.8598194

Ehsan, M. K., Shah, A. A., Amirzada, M. R., Naz, N., Konstantin, K., Sajid, M., & Gardezi, A. R. (2021). Characterization of sparse WLAN data traffic in opportunistic indoor environments as a prior for coexistence scenarios of modern wireless technologies. Alexandria Engineering Journal, 60(1). https://doi.org/10.1016/j.aej.2020.08.029

Ellyzabeth Sukmawati, Iwan Adhicandra, & Nur Sucahyo. (2022). Information System Design of Online-Based Technology News Forum. International Journal Of Artificial Intelligence Research, 1.2. https://doi.org/https://doi.org/10.29099/ijair.v6i1.2.593

He, Y., Guo, X., Zheng, X., Yu, Z., Zhang, J., Jiang, H., Na, X., & Zhang, J. (2022). Cross-Technology Communication for the Internet of Things: A Survey. ACM Computing Surveys, 55(5). https://doi.org/10.1145/3530049

Jin, G., Deng, C., Yang, J., Xu, Y., & Liao, S. (2019). A new differentially-fed frequency reconfigurable antenna for WLAN and sub-6GHz 5G applications. IEEE Access, 7, 56539–56546. https://doi.org/10.1109/ACCESS.2019.2901760

Kang, Y., Lee, S., Gwak, S., Kim, T., & An, D. (2021). Time-sensitive networking technologies for industrial automation in wireless communication systems. In Energies (Vol. 14, Issue 15). https://doi.org/10.3390/en14154497

Kirana, N. W. (2021). Desain dan Analisis Antena Mikrostrip Rectangular Dengan Slot “ m †Untuk Aplikasi WLAN 2.4 GHZ. JE-Unisla, 6(1), 453. https://doi.org/10.30736/je.v6i1.581

Kumar, A., & Om, H. (2020). Design of a USIM and ECC based handover authentication scheme for 5G-WLAN heterogeneous networks. Digital Communications and Networks, 6(3). https://doi.org/10.1016/j.dcan.2019.07.003

Kurniawan, S. A. and A. (2018). Rancang Bangun Antena Mikrostrip Beban Parasitik untuk Aplikasi ISM Band 2.4 GHz. Jurnal Teknik Dan Ilmu Komputer, 07(27), 277–286.

Li, Q. Y., Tran, H. H., & Park, H. C. (2018). Reconfigurable antenna with multiple linear and circular polarization diversity for WLAN applications. Microwave and Optical Technology Letters, 60(12), 2893–2899. https://doi.org/10.1002/mop.31411

Madiawati, H., & Asep Barnas Simanjuntak. (2020). Desain dan Realisasi Antena Mikrostrip Patch Rectangular Array dengan Slit pada Frekuensi 2620-2690 MHz untuk Aplikasi LTE. Jurnal Teknik: Media Pengembangan Ilmu Dan Aplikasi Teknik, 19(2). https://doi.org/10.26874/jt.vol19no02.232

Mohanta, H. C., Kouzani, A. Z., & Mandal, S. K. (2019). Reconfigurable antennas and their applications. Universal Journal of Electrical and Electronic Engineering, 6(4), 239–258. https://doi.org/10.13189/ujeee.2019.060406

Nafrianto, R. (2021). Analisis Implementasi Dusunet Menggunakan Teknologi Wireless Lan Dengan Wifi Portable Pada Dusun Pumpikatu, Desa Bonto.

Niture, D. V., Gurame, S. S., & Mahajan, S. P. (2018). A Pattern and Polarization Reconfigurable Antenna for WLAN Application. Proceedings of the 8th International Advance Computing Conference, IACC 2018, 303–308. https://doi.org/10.1109/IADCC.2018.8692086

Ojaroudi Parchin, N., H. Jahanbakhsh Basherlou, Y. I. A. Al-Yasir, A. M. Abdulkhaleq, and R. A. A.-A. (2020). Reconï¬gurable antennas: Switching techniques—A survey. Electronics.

Permenkominfo. (2019). Penggunaan Spektrum Frekuensi Radio. 1–22.

R adiwilaga, Y Alfian, U. R. (2018). Kebijakan Media Baru Di Indonesia:(Harapan Dinamika Dan Capaian Kebijakan Media Baru Di Indonesia).

Ruliyanta, R., & Nugroho, E. R. (2021). Rancang Bangun Antena Mikrostrip Pattch Rectangular Array 4x1 pada Frekuensi 1800 MHz-2300 MHz. Jurnal Ilmiah Giga, 24(1). https://doi.org/10.47313/jig.v24i1.1144

Sandi, E., Djatmiko, W., & Putri, R. K. (2020). Desain U-slot Ganda untuk Meningkatkan Bandwidth Antena Mimo 5G Millimeter-wave. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 8(1), 150. https://doi.org/10.26760/elkomika.v8i1.150

Shanmugasundaram, N., Ganesh, E. N., & Kumar, N. (2018). Estimation of power analysis in WLAN infrastructure. International Journal of Engineering and Technology(UAE), 7(2), 198–200. https://doi.org/10.14419/ijet.v7i2.21.12171

Sim, C. Y. D., Lin, H. L., & Ge, L. (2022). A simple coplanar waveguide fed polarization reconfigurable antenna design. International Journal of RF and Microwave Computer-Aided Engineering, 32(12). https://doi.org/10.1002/mmce.23440

Sumpena, M. R., Madiawati, H., & Elisma, E. (2020). Desain Antena Susun Mikrostrip Rectangular Patch 4x2 Untuk Aplikasi 5G. Prosiding Industrial Research Workshop and National Seminar, 11(1).

Supriya, S., Magheshwari, M., Sree Udhyalakshmi, S., Subhashini, R., & Musthafa. (2015). Smart grid technologies: Communication technologies and standards. International Journal of Applied Engineering Research, 10(20).

Surjati, I. (2010). Antena Mikrostrip : Konsep dan Aplikasi.

Wang, S., Zhu, L., Xu, K., Zhang, L., & Wang, X. (2019). Reliability evaluation for LTE based cbtc train ground communication systems. Journal of Advanced Transportation, 2019. https://doi.org/10.1155/2019/2689648

Yang, J., Wang, H., Lv, Z., & Wang, H. (2016). Design of miniaturized dual-band microstrip antenna for WLAN application. Sensors (Switzerland), 16(7). https://doi.org/10.3390/s16070983

Yang, M., & Li, B. (2020). Survey and Perspective on Extremely High Throughput (EHT) WLAN — IEEE 802.11be. Mobile Networks and Applications, 25(5), 1765–1780. https://doi.org/10.1007/s11036-020-01567-7

Author Biographies

Filda Ayu Afrida, Universitas Indonesia

Fitri Yuli Zulkifli, Universitas Indonesia

Eko Tjipto Rahardjo, Universitas Indonesia

License

Copyright (c) 2023 Filda Ayu Afrida, Fitri Yuli Zulkifli, Eko Tjipto Rahardjo

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).