Exploration of Thermophilic Bacteria: Systematic Literature Review


Gustina Indriati , Ruth Rize Paas Megahati S.






Vol. 9 No. 8 (2023): August


Bacteria, bacterial enzymes, industry, thermophilic bacteria



How to Cite

Indriati, G., & Megahati S., R. R. P. . (2023). Exploration of Thermophilic Bacteria: Systematic Literature Review. Jurnal Penelitian Pendidikan IPA, 9(8), 411–416. https://doi.org/10.29303/jppipa.v9i8.4643


Download data is not yet available.


Metrics Loading ...


The selection of enzymes derived from microbes has several advantages compared to those derived from animals and plants. One of the advantages is that the growth of enzymes will occur more quickly in bacteria because the cells rapidly undergo division and cell production will be easier to increase if needed in large quantities and the time needed for enzyme production will be shorter. Thermophilic microorganisms are known as bacteria that are tolerant of high temperatures, but on the other hand these bacteria are also able to survive at these temperatures. Where the purpose of research is to explain exploration of thermophilic bacteria. A review is conducted on the state-of-the-art methods using the preferred reporting items for reviews and meta-analyses (PRISMA) guideline. Bacteria have important economic value in human life. Knowledge in this branch of science is useful in medicine, hygiene, food science and nutrition, agriculture, and industry. Based on the results of macroscopic, microscopic and biochemical characterization, it was found that many bacteria with various types recording to their habitat or place of development, exploraton of thermophilic bacteria was carried out so that they could be useful for the industrial world.



Ali, S., Khan, S. A., Hamayun, M., & Lee, I.-J. (2023). The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms, 11(2), 510. https://doi.org/10.3390/microorganisms11020510

Ardhi, A., Nadenggan Sidauruk, A., Suraya, N., Wahyu Pratiwi, N., Pato, U., & Saryono. (2020). Molecular identification of amylase-producing thermophilic bacteria isolated from Bukit Gadang Hot Spring, West Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, 21(3). https://doi.org/10.13057/biodiv/d210319

Atalah, J., Cáceres-Moreno, P., Espina, G., & Blamey, J. M. (2019). Thermophiles and the applications of their enzymes as new biocatalysts. Bioresource Technology, 280, 478–488. https://doi.org/10.1016/j.biortech.2019.02.008

Biernat, K. (2016). Alternative Fuels, Technical and Environmental Conditions. InTech. https://doi.org/10.5772/60628

Boyer, P. H., Talagrand-Reboul, É., Guffroy, A., Schramm, F., Jaulhac, B., & Grillon, A. (2021). Direct examination of Gram-negative spiral-shaped rods: What is hidden behind the Campylobacter spp?. Clinical Microbiology and Infection, 27(3), 396–397. https://doi.org/10.1016/j.cmi.2020.07.035

Cebrián, G., Condón, S., & Mañas, P. (2017). Physiology of the Inactivation of Vegetative Bacteria by Thermal Treatments: Mode of Action, Influence of Environmental Factors and Inactivation Kinetics. Foods, 6(12), 107. https://doi.org/10.3390/foods6120107

Che Hussian, C. H. A., & Leong, W. Y. (2023). Thermostable enzyme research advances: A bibliometric analysis. Journal of Genetic Engineering and Biotechnology, 21(1), 37. https://doi.org/10.1186/s43141-023-00494-w

Constantino, M. A., Jabbarzadeh, M., Fu, H. C., & Bansil, R. (2016). Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape. Science Advances, 2(11), e1601661. https://doi.org/10.1126/sciadv.1601661

Dahiya, S., Bajaj, B. K., Kumar, A., Tiwari, S. K., & Singh, B. (2020). A review on biotechnological potential of multifarious enzymes in bread making. Process Biochemistry, 99, 290–306. https://doi.org/10.1016/j.procbio.2020.09.002

Djunaid, A., Yastrib, I., Arif, A., & Muin, M. (2019). Composition of bacteria types in the guts of Odontotermes sp. And Coptotermes sp. Preliminary study. IOP Conference Series: Earth and Environmental Science, 270(1), 012013. https://doi.org/10.1088/1755-1315/270/1/012013

Du Toit, A. (2021). Bacterial shape-shifters. Nature Reviews Microbiology, 19(2), 74–74. https://doi.org/10.1038/s41579-020-00499-z

Ejaz, U., Sohail, M., & Ghanemi, A. (2021). Cellulases: From Bioactivity to a Variety of Industrial Applications. Biomimetics, 6(3), 44. https://doi.org/10.3390/biomimetics6030044

Emran, M. A., Ismail, S. A., & Hashem, A. M. (2020). Production of detergent stable thermophilic alkaline protease by Bacillus licheniformis ALW1. Biocatalysis and Agricultural Biotechnology, 26, 101631. https://doi.org/10.1016/j.bcab.2020.101631

Farida Hikmawati, Susilowati, A., & Ratna Setyaningsih. (2019). Colony morphology and molecular identification of Vibrio spp. On green mussels (Perna viridis) in Yogyakarta, Indonesia tourism beach areas. Biodiversitas Journal of Biological Diversity, 20(10). https://doi.org/10.13057/biodiv/d201015

Finore, I., Feola, A., Russo, L., Cattaneo, A., Di Donato, P., Nicolaus, B., Poli, A., & Romano, I. (2023). Thermophilic bacteria and their thermozymes in composting processes: A review. Chemical and Biological Technologies in Agriculture, 10(1), 7. https://doi.org/10.1186/s40538-023-00381-z

Ginting, E. L., Wantania, L., Moko, E. M., Tumbol, R., Siby, M., & Wullur, S. (2021). Isolation and identification of thermophilic amylolytic bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity, 22(6). https://doi.org/10.13057/biodiv/d220638

Hofer, U. (2019). What’s the best bacterial shape? Nature Reviews Microbiology, 17(9), 528–529. https://doi.org/10.1038/s41579-019-0244-z

Huang, L., Gao, Q., Zhang, Y., Xu, W., & Yan, Q. (2021). Community Change and Pathogenicity of Vibrio. In IntechOpen. https://doi.org/10.5772/intechopen.96515

Irdawati, Putri, N. D., Syamsuardi, Agustien, A., & Rilda, Y. (2020). Potential of Xylanase Thermophilic Bacteria in the Pulp Biobleaching Process. In International Conference on Biology, Sciences and Education (ICoBioSE 2019), 23-27. https://doi.org/10.2991/absr.k.200807.006

Mantiri, F. R., Rumende, R. R. H., & Sudewi, S. (2019). Identification of α -amylase gene by PCR and activity of thermostable α -amylase from thermophilic Anoxybacillus thermarum isolated from Remboken hot spring in Minahasa, Indonesia. IOP Conference Series: Earth and Environmental Science, 217, 012045. https://doi.org/10.1088/1755-1315/217/1/012045

Mohammadi, S., Tarrahimofrad, H., Arjmand, S., Zamani, J., Haghbeen, K., & Aminzadeh, S. (2022). Expression, characterization, and activity optimization of a novel cellulase from the thermophilic bacteria Cohnella sp. A01. Scientific Reports, 12(1), 10301. https://doi.org/10.1038/s41598-022-14651-7

Mukherjee, P., Mondal, I., Dey, D., Dan, E., Khatun, F., & Tewari, S. (2023). An Overview on Microbial Enzymes and their Industrial Applications. Journal of Survey in Fisheries Sciences, 10(1S), 6154-6160. Retrieved from http://sifisheriessciences.com/journal/index.php/journal/article/view/2120

Najm, T. A., & Walsh, M. K. (2022). C Characterization of Lipases from Geobacillus stearothermophilus and Anoxybacillus flavithermuscell Lysates. Food and Nutrition Sciences, 13(03), 238–251. https://doi.org/10.4236/fns.2022.133020

Novik, G., Savich, V., & Meerovskaya, O. (2019). Geobacillus Bacteria: Potential Commercial Applications in Industry, Bioremediation, and Bioenergy Production. In Growing and Handling of Bacterial Cultures. IntechOpen. https://doi.org/10.5772/intechopen.76053

Okpara, M. O. (2022). Microbial Enzymes and Their Applications in Food Industry: A Mini-Review. Advances in Enzyme Research, 10(01), 23–47. https://doi.org/10.4236/aer.2022.101002

Ozatay, S. (2020). Recent Applications of Enzymes in Food Industry. Journal of Current Researches on Engineering, Science and Technology, 6(1), 17–30. https://doi.org/10.26579/jocrest.52

Parrilli, E., Tutino, M. L., & Marino, G. (2022). Biofilm as an adaptation strategy to extreme conditions. Rendiconti Lincei. Scienze Fisiche e Naturali, 33(3), 527–536. https://doi.org/10.1007/s12210-022-01083-8

Pazoki, R., Vujkovic, M., Elliott, J., Evangelou, E., Gill, D., Ghanbari, M., Van Der Most, P. J., Pinto, R. C., Wielscher, M., Farlik, M., Zuber, V., De Knegt, R. J., Snieder, H., Uitterlinden, A. G., Lifelines Cohort Study, Boezen, H. M., Franke, L., Van Der Harst, P., Navis, G., … Ramoni, R. B. (2021). Genetic analysis in European ancestry individuals identifies 517 loci associated with liver enzymes. Nature Communications, 12(1), 2579. https://doi.org/10.1038/s41467-021-22338-2

Ramadhanti, N., Melia, S., Hellyward, J., & Purwati, E. (2021). Characteristics of lactic acid bacteria isolated from palm sugar from West Sumatra, Indonesia and their potential as a probiotic. Biodiversitas Journal of Biological Diversity, 22(5). https://doi.org/10.13057/biodiv/d220520

Sampaio, A., Silva, V., Poeta, P., & Aonofriesei, F. (2022). Vibrio spp.: Life Strategies, Ecology, and Risks in a Changing Environment. Diversity, 14(2), 97. https://doi.org/10.3390/d14020097

Sanka, I., Kusuma, A. B., Martha, F., Hendrawan, A., Pramanda, I. T., Wicaksono, A., Jati, A. P., Mazaya, M., Dwijayanti, A., Izzati, N., Maulana, M. F., & Widyaningrum, A. R. (2023). Synthetic biology in Indonesia: Potential and projection in a country with mega biodiversity. Biotechnology Notes, 4, 41–48. https://doi.org/10.1016/j.biotno.2023.02.002

Sayed, F. A.-Z., Eissa, N. G., Shen, Y., Hunstad, D. A., Wooley, K. L., & Elsabahy, M. (2022). Morphologic design of nanostructures for enhanced antimicrobial activity. Journal of Nanobiotechnology, 20(1), 536. https://doi.org/10.1186/s12951-022-01733-x

Sikdar, D., Kanungo, I., & Das, D. (2023). Microbial Enzymes: A Summary Focusing on Biotechnology Prospective for Combating Industrial Pollutants. In Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022), 70–76. https://doi.org/10.2991/978-94-6463-020-6_8

Singh, S., Datta, S., Narayanan, K. B., & Rajnish, K. N. (2021). Bacterial exo-polysaccharides in biofilms: Role in antimicrobial resistance and treatments. Journal of Genetic Engineering and Biotechnology, 19(1), 140. https://doi.org/10.1186/s43141-021-00242-y

Sohlenkamp, C., & Geiger, O. (2016). Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiology Reviews, 40(1), 133–159. https://doi.org/10.1093/femsre/fuv008

Solanki, P., Putatunda, C., Kumar, A., Bhatia, R., & Walia, A. (2021). Microbial proteases: Ubiquitous enzymes with innumerable uses. 3 Biotech, 11(10), 428. https://doi.org/10.1007/s13205-021-02928-z

Soy, S., Nigam, V. K., & Sharma, S. R. (2021). Enhanced production and biochemical characterization of a thermostable amylase from thermophilic bacterium Geobacillus icigianus BITSNS038. Journal of Taibah University for Science, 15(1), 730–745. https://doi.org/10.1080/16583655.2021.2002549

Vavitsas, K., Glekas, P. D., & Hatzinikolaou, D. G. (2022). Synthetic Biology of Thermophiles: Taking Bioengineering to the Extremes? Applied Microbiology, 2(1), 165–174. https://doi.org/10.3390/applmicrobiol2010011

Verma, S., Meghwanshi, G. K., & Kumar, R. (2021). Current perspectives for microbial lipases from extremophiles and metagenomics. Biochimie, 182, 23–36. https://doi.org/10.1016/j.biochi.2020.12.027

Villain, P., Catchpole, R., Forterre, P., Oberto, J., Da Cunha, V., & Basta, T. (2022). Expanded Dataset Reveals the Emergence and Evolution of DNA Gyrase in Archaea. Molecular Biology and Evolution, 39(8), msac155. https://doi.org/10.1093/molbev/msac155

Wang, J., Ma, W., & Wang, X. (2021). Insights into the structure of Escherichia coli outer membrane as the target for engineering microbial cell factories. Microbial Cell Factories, 20(1), 73. https://doi.org/10.1186/s12934-021-01565-8

Yassin, S. N., Jiru, T. M., & Indracanti, M. (2021). Screening and Characterization of Thermostable Amylase-Producing Bacteria Isolated from Soil Samples of Afdera, Afar Region, and Molecular Detection of Amylase-Coding Gene. International Journal of Microbiology, 2021, 1–14. https://doi.org/10.1155/2021/5592885

Yuzugullu Karakus, Y. (2020). Typical Catalases: Function and Structure. In Glutathione System and Oxidative Stress in Health and Disease. IntechOpen. https://doi.org/10.5772/intechopen.90048

Zuliani, L., Serpico, A., De Simone, M., Frison, N., & Fusco, S. (2021). Biorefinery Gets Hot: Thermophilic Enzymes and Microorganisms for Second-Generation Bioethanol Production. Processes, 9(9), 1583. https://doi.org/10.3390/pr9091583

Author Biographies

Gustina Indriati, Sekolah Tinggi Ilmu Kesehatan Indonesia



Ruth Rize Paas Megahati S., Politeknik Kesehatan Kesuma Bangsa, Bandar Lampung, Lampung




Copyright (c) 2023 Gustina Indriati, Ruth Rize Paas Megahati S.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).