Vol. 9 No. 9 (2023): September
Open Access
Peer Reviewed

Making Bioethanol from Cassava as an Environmentally Friendly Fuel Mixing Material

Authors

Ridwan , Hermawati , Hamsina , Trinugie Aprin Paredatu , M. Tang , Djusdil Akrim , Ruslan Hasani

DOI:

10.29303/jppipa.v9i9.4716

Published:

2023-09-25

Downloads

Abstract

Bioethanol derived from cassava has the potential as an alternative energy material because cassava plants contain starch, sugar or cellulose which can be used in the process of making alternative and environmentally friendly fuels. This study aims to make bioethanol from cassava starch. This research method starts from material preparation to the process stage consisting of the fermentation process, distillation process, and the final stage, namely testing ethanol content and adding fuel. 5 kg of cassava is used to produce 98 ml of bioethanol distillation with 16% rendition. The combustion test was carried out to obtain a comparison of the calorific value between the fuel mixture - Bioethanol and fuel -Alcohol, Mixing partalalite - Bioethanol 1: 19 (95% partalaite: 5% Bioethanol) and fuel - Alcohol 1: 19 (95% partalite: 5 % alcohol). The results of the research obtained the calorific value of combustion of the partalalite - alcohol mixture: 11,649.48 kcal/kg, while for the partalalite - bioethanol mixture: 11,486.15 kcal/kg. So that the higher the concentration of ethanol mixed in partalite, the higher the calorific value.

Keywords:

Bioethanol Cassava Distillation Fermentation

References

Althuri, A., & Venkata Mohan, S. (2022). Emerging innovations for sustainable production of bioethanol and other mercantile products from circular economy perspective. Bioresource Technology, 363, 128013. https://doi.org/10.1016/j.biortech.2022.128013

Amalia, A. V., Fibriana, F., Widiatningrum, T., & Hardianti, R. D. (2021). Bioconversion and valorization of cassava-based industrial wastes to bioethanol gel and its potential application as a clean cooking fuel. Biocatalysis and Agricultural Biotechnology, 35, 102093. https://doi.org/10.1016/j.bcab.2021.102093

Ansar, Sukmawaty, Abdullah, S. H., Nazaruddin, & Safitri, E. (2020). Physical and Chemical Properties of a Mixture Fuel between Palm Sap (Arenga pinnata Merr) Bioethanol and Premium Fuel. ACS Omega, 5(22), 12745–12750. https://doi.org/10.1021/acsomega.0c00247

Arnata, I. W., Gunam, I. B. W., Anggreni, A. A. M. D., Wijaya, I. M. M., & Sartika, D. (2021). Utilization of solid tapioca waste for bioethanol production by co-fermentation of baker’s and tapai yeast. IOP Conference Series: Earth and Environmental Science, 724(1), 012058. https://doi.org/10.1088/1755-1315/724/1/012058

Arwin, A., Yuliati, L., & Widodo, A. S. (2019). Karakteristik Pembakaran Droplet Campuran Bahan Bakar Bensin-Etanol. Prosiding SENIATI, 5(1), 291–296. https://doi.org/10.36040/seniati.v5i1.453

Choo, B. C., Ismail, K. S. K., & Ma’Radzi, A. H. (2021). Scaling-up and techno-economics of ethanol production from cassava starch via separate hydrolysis and fermentation. IOP Conference Series: Earth and Environmental Science, 765(1), 012004. https://doi.org/10.1088/1755-1315/765/1/012004

Hamsina, H., Hermawati, H., Tang, M., Hasani, R., Anggraini, N., & Safira, I. (2023). Characterization of Fiber Optic Biosensors Based on Chitinase Immobilization on Chitosan Film-Tofu Solid Waste: Metal Ions Monitoring in Water. Jurnal Penelitian Pendidikan IPA, 9(5), 2625–2631. https://doi.org/10.29303/jppipa.v9i5.3136

Haregu, S., Likna, Y., Tadesse, D., & Masi, C. (2023). Recent Development of Biomass Energy as a Sustainable Energy Source to Mitigate Environmental Change. In Bioenergy (pp. 119–138). Springer. https://doi.org/10.1007/978-981-99-3002-9_8

Ibrahim, T. H., Betiku, E., Solomon, B. O., Oyedele, J. O., & Dahunsi, S. O. (2022). Mathematical modelling and parametric optimization of biomethane production with response surface methodology: A case of cassava vinasse from a bioethanol distillery. Renewable Energy, 200, 395–404. https://doi.org/10.1016/j.renene.2022.09.083

Jiao, J., Li, J., & Bai, Y. (2019). Uncertainty analysis in the life cycle assessment of cassava ethanol in China. Journal of Cleaner Production, 206, 438–451. https://doi.org/10.1016/j.jclepro.2018.09.199

Junipitoyo, B. (2019). Pengaruh Campuran Bioethanol pada Pertalite Terhadap Torsi dan Daya Piston Engine 1 Silinder. Jurnal Penelitian, 4(3), 40–48. https://doi.org/10.46491/jp.v4i3.380

Jusakulvijit, P., Bezama, A., & Thrän, D. (2021). The Availability and Assessment of Potential Agricultural Residues for the Regional Development of Second-Generation Bioethanol in Thailand. Waste and Biomass Valorization, 12(11), 6091–6118. https://doi.org/10.1007/s12649-021-01424-y

Karimi, F., Mazaheri, D., Saei Moghaddam, M., Mataei Moghaddam, A., Sanati, A. L., & Orooji, Y. (2021). Solid-state fermentation as an alternative technology for cost-effective production of bioethanol as useful renewable energy: a review. Biomass Conversion and Biorefinery, 1–17. https://doi.org/10.1007/s13399-021-01875-2

Kassim, M. A., Meng, T. K., Kamaludin, R., Hussain, A. H., & Bukhari, N. A. (2022). Bioprocessing of sustainable renewable biomass for bioethanol production. In Value-Chain of Biofuels (pp. 195–234). Elsevier. https://doi.org/10.1016/B978-0-12-824388-6.00004-X

Kitson-Hytey, M., Fei-Baffoe, B., Sackey, L. N. A., & Miezah, K. (2022). Production of bioethanol from plantain and yam peels using Aspergillus niger and Saccharomyces cerevisiae. Biomass Conversion and Biorefinery, 169–193. https://doi.org/10.1007/s13399-022-03352-w

Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90, 877–891. https://doi.org/10.1016/j.rser.2018.03.111

Lestari, H., Setiawan, W., & Siskandar, R. (2020). Science Literacy Ability of Elementary Students Through Nature of Science-based Learning with the Utilization of the Ministry of Education and Culture’s “Learning House.†Jurnal Penelitian Pendidikan IPA, 6(2), 215–220. https://doi.org/10.29303/jppipa.v6i2.410

Lyu, H., Yang, S., Zhang, J., Feng, Y., & Geng, Z. (2021). Impacts of utilization patterns of cellulosic C5 sugar from cassava straw on bioethanol production through life cycle assessment. Bioresource Technology, 323, 124586. https://doi.org/10.1016/j.biortech.2020.124586

Rahmatsyah, S. W., & Dwiningsih, K. (2021). Development of Interactive E-Module on The Periodic System Materials as an Online Learning Media. Jurnal Penelitian Pendidikan IPA, 7(2), 255–261. https://doi.org/10.29303/jppipa.v7i2.582

Rewlay-ngoen, C., Papong, S., Onbhuddha, R., & Thanomnim, B. (2021). Evaluation of the environmental performance of bioethanol from cassava pulp using life cycle assessment. Journal of Cleaner Production, 284, 124741. https://doi.org/10.1016/j.jclepro.2020.124741

Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B., Rupani, P. F., & Mohammadi, A. A. (2020). Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy, 199, 117457. https://doi.org/10.1016/j.energy.2020.117457

Saggi, S. K., & Dey, P. (2019). An overview of simultaneous saccharification and fermentation of starchy and lignocellulosic biomass for bio-ethanol production. Biofuels, 10(3), 287–299. https://doi.org/10.1080/17597269.2016.1193837

Suhartini, S., Rohma, N. A., Mardawati, E., Kasbawati, Hidayat, N., & Melville, L. (2022). Biorefining of oil palm empty fruit bunches for bioethanol and xylitol production in Indonesia: A review. Renewable and Sustainable Energy Reviews, 154, 111817. https://doi.org/10.1016/j.rser.2021.111817

Surya, B., Hamsina, H., Ridwan, R., Baharuddin, B., Menne, F., Fitriyah, A. T., & Rasyidi, E. S. (2020). The Complexity of Space Utilization and Environmental Pollution Control in the Main Corridor of Makassar City, South Sulawesi, Indonesia. Sustainability, 12(21), 9244. https://doi.org/10.3390/su12219244

Syafri, S., Surya, B., Ridwan, R., Bahri, S., Rasyidi, E. S., & Sudarman, S. (2020). Water Quality Pollution Control and Watershed Management Based on Community Participation in Maros City, South Sulawesi, Indonesia. Sustainability, 12(24), 10260. https://doi.org/10.3390/su122410260

Trakulvichean, S., Chaiprasert, P., Otmakhova, J., & Songkasiri, W. (2019). Integrated Economic and Environmental Assessment of Biogas and Bioethanol Production from Cassava Cellulosic Waste. Waste and Biomass Valorization, 10(3), 691–700. https://doi.org/10.1007/s12649-017-0076-x

Winarso, R., & Nugraha, B. S. (2015). Pengembangan Alat Dehydrator Bioetanol Model Bath dengan Bahan Baku Singkong. Prosiding SNATIF.

Wu, Y., Guo, W., Cai, Z., Tong, Y., & Chen, J. (2023). Research on Contract Coordination Mechanism of Contract Farming Considering the Green Innovation Level. Sustainability, 15(4), 3314. https://doi.org/10.3390/su15043314

Wusnah, Supardan, M. D., Haryani, S., & Yunardi. (2021). Future production of bioethanol from microalgae as a renewable source of energy. IOP Conference Series: Earth and Environmental Science, 922(1), 012010. https://doi.org/10.1088/1755-1315/922/1/012010

Author Biographies

Ridwan, Universitas Bosowa

Author Origin : Indonesia

Hermawati, Bosowa University

Author Origin : Indonesia

Hamsina, Bosowa University

Author Origin : Indonesia

Trinugie Aprin Paredatu, Bosowa University

Author Origin : Indonesia

M. Tang, Bosowa University

Author Origin : Indonesia

Djusdil Akrim, Bosowa University

Author Origin : Indonesia

Ruslan Hasani, Poltekkes Kemenkes Makassar

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Ridwan, Hermawati, Hamsina, Paredatu, T. A. ., Tang, M., Akrim, D. ., & Hasani, R. . (2023). Making Bioethanol from Cassava as an Environmentally Friendly Fuel Mixing Material. Jurnal Penelitian Pendidikan IPA, 9(9), 6985–6991. https://doi.org/10.29303/jppipa.v9i9.4716