Description of Students' Multirepresentation Ability on Hydrocarbon Material at SMA Negeri 1 Sungai Kunyit

Authors

Hani Amifelia , Hairida , Maria Ulfah , Erlina , Ira Lestari

DOI:

10.29303/jppipa.v10i7.4762

Published:

2024-07-25

Issue:

Vol. 10 No. 7 (2024): July: In Press

Keywords:

Ability, Hydrocarbons, Multirepresentation

Research Articles

Downloads

How to Cite

Amifelia, H., Hairida, Ulfah, M., Erlina, & Lestari, I. (2024). Description of Students’ Multirepresentation Ability on Hydrocarbon Material at SMA Negeri 1 Sungai Kunyit. Jurnal Penelitian Pendidikan IPA, 10(7), 3587–3596. https://doi.org/10.29303/jppipa.v10i7.4762

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Material in chemistry learning will be easier to understand if students are able to represent it at three levels of representation, namely macroscopic, sub-microscopic and symbolic. This research aims to describe students' abilities in using various representations in class XI MIPA 1 hydrocarbon material at SMA Negeri 1 Sungai Kunyit. Students' thinking processes require various representations and various ways or steps to solve problems. The type of research used is quantitative descriptive research. The research instruments used included 9 two tier multiple choice objective test questions and an interview guide. This research involved 20 students of class XI MIPA 1 SMA Negeri 1 Sungai Kunyit. The research results show that overall, the average multi-representation ability of students is 29% in the poor category. At the macroscopic representation level, the average percentage obtained is 20% which can be classified as very poor. At the sub-microscopic level of representation, the average is 35% which is included in the poor category. Finally, at the level of symbolic representation the average percentage is 31% which is also included in the poor category.

References

Adadan, E. (2013). Using Multiple Representations to Promote Grade 11 Students’ Scientific Understanding of the Particle Theory of Matter. Research in Science Education, 43(3), 1079–1105. https://doi.org/10.1007/s11165-012-9299-9

Ali, T. (2012). A Case Study of the Common Difficulties Experienced by High School Students in Chemistry Classroom in Gilgit-Baltistan (Pakistan). SAGE Open, 2(2), 215824401244729. https://doi.org/10.1177/2158244012447299

Bahaudin, A., Festiyed, F., Djamas, D., & Putri, N. H. (2019). Validity of Physics Learning Module Based on Multirepresentation to Improve the Problem Solving Ability. Journal of Physics: Conference Series, 1185(1). https://doi.org/10.1088/1742-6596/1185/1/012063

Bobek, E., & Tversky, B. (2016). Creating Visual Explanations Improves Learning. Cognitive Research: Principles and Implications, 1(1), 27. https://doi.org/10.1186/s41235-016-0031-6

Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2007). The Development of A Two-Tier Multiple-Choice Diagnostic Instrument for Evaluating Secondary School Students’ Ability to Describe and Explain Chemical Reactions Using Multiple Levels of Representation. Chemistry Education Research and Practice, 8(3), 293–307. https://doi.org/10.1039/B7RP90006F

Chiu, M.-H., Chou, C.-C., Chen, Y.-H., Hung, T., Tang, W.-T., Hsu, J.-W., Liaw, H. L., & Tsai, M.-K. (2019). Model-Based Learning about Structures and Properties of Chemical Elements and Compounds via the Use of Augmented Realities. Chemistry Teacher International, 1(1), 20180002. https://doi.org/10.1515/cti-2018-0002

Colletti, L., Krik, S., Lugli, P., & Corni, F. (2023). Teaching and Investigating on Modelling through Analogy in Primary School. Education Sciences, 13(9), 872. https://doi.org/10.3390/educsci13090

Derman, A., Koçak, N., & Eilks, I. (2019). Insights into Components of Prospective Science Teachers’ Mental Models and Their Preferred Visual Representations of Atoms. Education Sciences, 9(2), 154. https://doi.org/10.3390/educsci9020154

Doyan, A., Taufik, M., & Anjani, R. (2018). Pengaruh Pendekatan Multi Representasi Terhadap Hasil Belajar Fisika Ditinjau dari Motivasi Belajar Peserta Didik. Jurnal Penelitian Pendidikan IPA, 4(1). https://doi.org/10.29303/jppipa.v4i1.99

Eky, V. E. C. I., Tika, N., & Muderawan, I. W. (2018). Analisis Model Mental Siswa dalam Penggunaan Unit Kegiatan Belajar Mandiri tentang Hidrokarbon. Jurnal Pendidikan Kimia Undiksha, 2(1), 15. https://doi.org/10.23887/jjpk.v2i1.21183

Eliyawati, E., Rohman, I., & Kadarohman, A. (2018). The Effect of Learning Multimedia on Students’ Understanding of Macroscopic, Sub-Microscopic, and Symbolic Levels in Electrolyte and Nonelectrolyte. Journal of Physics: Conference Series, 1013, 012002. https://doi.org/10.1088/1742-6596/1013/1/012002

Farida, I., Liliasari, L., Sopandi, W., & Widyantoro, D. H. (2017). A Web-Based Model to Enhance Competency in the Interconnection of Multiple Levels of Representation for Pre-Service Teachers. Ideas for 21st Century Education, 359–362. https://doi.org/10.1201/9781315166575-72

Fromm, J., Radianti, J., Wehking, C., Stieglitz, S., Majchrzak, T. A., & Brocke, J. V. (2021). More Than Experience? - On the Unique Opportunities of Virtual Reality to Afford A Holistic Experiential Learning Cycle. The Internet and Higher Education, 50, 100804. https://doi.org/10.1016/j.iheduc.2021.100804

Handayani, H., & Juanda, R. Y. (2018). Profil Kemampuan Representasi Matematis Siswa Sekolah Dasar di Kecamatan Sumedang Utara. Primary: Jurnal Pendidikan Guru Sekolah Dasar, 7(2), 211. https://doi.org/10.33578/jpfkip.v7i2.6265

Hasanah, D. W., Mulyani, S., & Widhiyanti, T. (2024). Multiple Representations Analysis of Chemical Bonding Concepts in General Chemistry Books. KnE Social Sciences. https://doi.org/10.18502/kss.v9i8.15554

Hikmayanti, M., & Utami, L. (2019). Analisis Kemampuan Multiple Representasi Siswa Kelas XI MAN 1 Pekanbaru pada Materi Titrasi Asam Basa. JRPK: Jurnal Riset Pendidikan Kimia, 9(1), 52–57. https://doi.org/10.21009/jrpk.091.07

Hohol, M., Willmes, K., Nęcka, E., Brożek, B., Nuerk, H.-C., & Cipora, K. (2020). Professional Mathematicians Do Not Differ from Others in the Symbolic Numerical Distance and Size Effects. Scientific Reports, 10(1), 11531. https://doi.org/10.1038/s41598-020-68202-z

Kohse-Höinghaus, K. (2023). Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews, 123(8), 5139–5219. https://doi.org/10.1021/acs.chemrev.2c00828

Kutscher, T., & Eid, M. (2020). The Effect of Rating Scale Length on the Occurrence of Inappropriate Category Use for the Assessment of Job Satisfaction: An Experimental Online Study. Journal of Well-Being Assessment, 4(1), 1–35. https://doi.org/10.1007/s41543-020-00024-2

Kyriazos, T. A., & Stalikas, A. (2018). Applied Psychometrics: The Steps of Scale Development and Standardization Process. Psychology, 09(11), 2531–2560. https://doi.org/10.4236/psych.2018.911145

Lazou, C., & Tsinakos, A. (2023). Critical Immersive-Triggered Literacy as a Key Component for Inclusive Digital Education. Education Sciences, 13(7), 696. https://doi.org/10.3390/educsci13070

Mujibaturrahmi, M., Winarni, S., & Hanum, L. (2022). Patterns of Students’ Macroscopic, Submicroscopic, and Symbolic Representation Ability in Acid-Base Topic. EduChemia (Jurnal Kimia dan Pendidikan), 7(2), 204. https://doi.org/10.30870/educhemia.v7i2.14250

Nadeem, M., Oroszlanyova, M., & Farag, W. (2023). Effect of Digital Game-Based Learning on Student Engagement and Motivation. Computers, 12(9), 177. https://doi.org/10.3390/computers12090177

Nukila, M., Muharini, R., Sartika, R. P., Hairida, H., & Lestari, I. (2022). Pengembangan E-Suplemen Berbasis Multirepresentasi pada Materi Hidrokarbon. Edukatif: Jurnal Ilmu Pendidikan, 4(4), 5970–5987. https://doi.org/10.31004/edukatif.v4i4.3071

Ott, N., Brünken, R., Vogel, M., & Malone, S. (2018). Multiple Symbolic Representations: The Combination of Formula and Text Supports Problem Solving in the Mathematical Field of Propositional Logic. Learning and Instruction, 58, 88–105. https://doi.org/10.1016/j.learninstruc.2018.04.010

Purwanto, K. K. (2021). Analysis on Students’ Understanding of Hydrocarbon Compounds in Organic Chemistry II Course. EduChemia (Jurnal Kimia dan Pendidikan), 6(2), 219. https://doi.org/10.30870/educhemia.v6i2.10727

Putri, D. N. A., Epinur, E., & Muhaimin, M. (2019). Pengembangan E-Magazine Materi Kesetimbangan Kimia di SMAN 1 Kota Jambi. Journal of The Indonesian Society of Integrated Chemistry, 11(1), 10–19. https://doi.org/10.22437/jisic.v11i1.6733

Radmehr, F., & Drake, M. (2020). Exploring Students’ Metacognitive Knowledge: The Case of Integral Calculus. Education Sciences, 10(3), 55. https://doi.org/10.3390/educsci10030055

Rahmawati, S. Y. D., Ashadi, A., & Susilowati, E. (2018). Student’s Profile about Critical Thinking Ability on Hydrocarbon Compounds Concept. AIP Conference Proceedings, 2014(January). https://doi.org/10.1063/1.5054451

Rahmawati, Y., Dianhar, H., & Arifin, F. (2021). Analysing Students’ Spatial Abilities in Chemistry Learning Using 3D Virtual Representation. Education Sciences, 11(4), 185. https://doi.org/10.3390/educsci11040185

Sim, J. H., & Daniel, E. G. S. (2014). Representational Competence in Chemistry: A Comparison between Students with Different Levels of Understanding of Basic Chemical Concepts and Chemical Representations. Cogent Education, 1(1), 991180. https://doi.org/10.1080/2331186X.2014.991180

Sokrat, H., Tamani, S., Moutaabbid, M., & Radid, M. (2014). Difficulties of Students from the Faculty of Science with Regard to Understanding the Concepts of Chemical Thermodynamics. Procedia - Social and Behavioral Sciences, 116, 368–372. https://doi.org/10.1016/j.sbspro.2014.01.223

Sulastri, S., Rusman, R., & Arifa, A. (2018). Pengembangan Soal-Soal Kimia Bermuatan Nilai-Nilai untuk Memperkokoh Karakter Siswa SMA. JTK (Jurnal Tadris Kimiya), 3(2), 171–181. https://doi.org/10.15575/jtk.v3i2.3512

Susac, A., Bubic, A., Vrbanc, A., & Planinic, M. (2014). Development of Abstract Mathematical Reasoning: The Case of Algebra. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00679

Talanquer, V. (2011). Macro, Submicro, and Symbolic: The Many Faces of the Chemistry “Triplet.” International Journal of Science Education, 33(2), 179–195. https://doi.org/10.1080/09500690903386435

Tomlinson, A., Simpson, A., & Killingback, C. (2023). Student Expectations of Teaching and Learning When Starting University: A Systematic Review. Journal of Further and Higher Education, 47(8), 1054–1073. https://doi.org/10.1080/0309877X.2023.2212242

Widianingtiyas, L., Siswoyo, S., & Bakri, F. (2015). Pengaruh Pendekatan Multi Representasi dalam Pembelajaran Fisika Terhadap Kemampuan Kognitif Siswa SMA. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 01(1), 31–38. https://doi.org/10.21009/1.01105

Wiyarsi, A., Sutrisno, H., & Rohaeti, E. (2018). The Effect of Multiple Representation Approach on Students’ Creative Thinking Skills: A Case of “Rate of Reaction” Topic. Journal of Physics: Conference Series, 1097(1). https://doi.org/10.1088/1742-6596/1097/1/012054

Wulandari, I., Irwansyah, F. S., Farida, I., & Ramdhani, M. A. (2019). Development of Student’s Submicroscopic Representation Ability on Molecular Geometry Material Using Augmented Reality (AR) Media. Journal of Physics: Conference Series, 1280(3). https://doi.org/10.1088/1742-6596/1280/3/032016

Zahro’, S. F., & Ismono, I. (2021). Analisis Kemampuan Multirepresentasi Siswa pada Materi Kesetimbangan Kimia di Masa Pandemi Covid-19. Chemistry Education Practice, 4(1), 30. https://doi.org/10.29303/cep.v4i1.2338

Author Biographies

Hani Amifelia, Universitas Tanjungpura

Hairida, Universitas Tanjungpura

Maria Ulfah, Universitas Tanjungpura

Erlina, Universitas Tanjungpura

Ira Lestari, Universitas Tanjungpura

License

Copyright (c) 2024 Hani Amifelia, Hairida, Maria Ulfah, Erlina, Ira Lestari

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).