Vol. 10 No. 7 (2024): July
Open Access
Peer Reviewed

Description of Students' Multirepresentation Ability on Hydrocarbon Material at SMA Negeri 1 Sungai Kunyit

Authors

Hani Amifelia , Hairida , Maria Ulfah , Erlina , Ira Lestari

DOI:

10.29303/jppipa.v10i7.4762

Published:

2024-07-25

Downloads

Abstract

Material in chemistry learning will be easier to understand if students are able to represent it at three levels of representation, namely macroscopic, sub-microscopic and symbolic. This research aims to describe students' abilities in using various representations in class XI MIPA 1 hydrocarbon material at SMA Negeri 1 Sungai Kunyit. Students' thinking processes require various representations and various ways or steps to solve problems. The type of research used is quantitative descriptive research. The research instruments used included 9 two tier multiple choice objective test questions and an interview guide. This research involved 20 students of class XI MIPA 1 SMA Negeri 1 Sungai Kunyit. The research results show that overall, the average multi-representation ability of students is 29% in the poor category. At the macroscopic representation level, the average percentage obtained is 20% which can be classified as very poor. At the sub-microscopic level of representation, the average is 35% which is included in the poor category. Finally, at the level of symbolic representation the average percentage is 31% which is also included in the poor category.

Keywords:

Ability Hydrocarbons Multirepresentation

References

Adadan, E. (2013). Using Multiple Representations to Promote Grade 11 Students’ Scientific Understanding of the Particle Theory of Matter. Research in Science Education, 43(3), 1079–1105. https://doi.org/10.1007/s11165-012-9299-9

Ali, T. (2012). A Case Study of the Common Difficulties Experienced by High School Students in Chemistry Classroom in Gilgit-Baltistan (Pakistan). SAGE Open, 2(2), 215824401244729. https://doi.org/10.1177/2158244012447299

Bahaudin, A., Festiyed, F., Djamas, D., & Putri, N. H. (2019). Validity of Physics Learning Module Based on Multirepresentation to Improve the Problem Solving Ability. Journal of Physics: Conference Series, 1185(1). https://doi.org/10.1088/1742-6596/1185/1/012063

Bobek, E., & Tversky, B. (2016). Creating Visual Explanations Improves Learning. Cognitive Research: Principles and Implications, 1(1), 27. https://doi.org/10.1186/s41235-016-0031-6

Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2007). The Development of A Two-Tier Multiple-Choice Diagnostic Instrument for Evaluating Secondary School Students’ Ability to Describe and Explain Chemical Reactions Using Multiple Levels of Representation. Chemistry Education Research and Practice, 8(3), 293–307. https://doi.org/10.1039/B7RP90006F

Chiu, M.-H., Chou, C.-C., Chen, Y.-H., Hung, T., Tang, W.-T., Hsu, J.-W., Liaw, H. L., & Tsai, M.-K. (2019). Model-Based Learning about Structures and Properties of Chemical Elements and Compounds via the Use of Augmented Realities. Chemistry Teacher International, 1(1), 20180002. https://doi.org/10.1515/cti-2018-0002

Colletti, L., Krik, S., Lugli, P., & Corni, F. (2023). Teaching and Investigating on Modelling through Analogy in Primary School. Education Sciences, 13(9), 872. https://doi.org/10.3390/educsci13090

Derman, A., Koçak, N., & Eilks, I. (2019). Insights into Components of Prospective Science Teachers’ Mental Models and Their Preferred Visual Representations of Atoms. Education Sciences, 9(2), 154. https://doi.org/10.3390/educsci9020154

Doyan, A., Taufik, M., & Anjani, R. (2018). Pengaruh Pendekatan Multi Representasi Terhadap Hasil Belajar Fisika Ditinjau dari Motivasi Belajar Peserta Didik. Jurnal Penelitian Pendidikan IPA, 4(1). https://doi.org/10.29303/jppipa.v4i1.99

Eky, V. E. C. I., Tika, N., & Muderawan, I. W. (2018). Analisis Model Mental Siswa dalam Penggunaan Unit Kegiatan Belajar Mandiri tentang Hidrokarbon. Jurnal Pendidikan Kimia Undiksha, 2(1), 15. https://doi.org/10.23887/jjpk.v2i1.21183

Eliyawati, E., Rohman, I., & Kadarohman, A. (2018). The Effect of Learning Multimedia on Students’ Understanding of Macroscopic, Sub-Microscopic, and Symbolic Levels in Electrolyte and Nonelectrolyte. Journal of Physics: Conference Series, 1013, 012002. https://doi.org/10.1088/1742-6596/1013/1/012002

Farida, I., Liliasari, L., Sopandi, W., & Widyantoro, D. H. (2017). A Web-Based Model to Enhance Competency in the Interconnection of Multiple Levels of Representation for Pre-Service Teachers. Ideas for 21st Century Education, 359–362. https://doi.org/10.1201/9781315166575-72

Fromm, J., Radianti, J., Wehking, C., Stieglitz, S., Majchrzak, T. A., & Brocke, J. V. (2021). More Than Experience? - On the Unique Opportunities of Virtual Reality to Afford A Holistic Experiential Learning Cycle. The Internet and Higher Education, 50, 100804. https://doi.org/10.1016/j.iheduc.2021.100804

Handayani, H., & Juanda, R. Y. (2018). Profil Kemampuan Representasi Matematis Siswa Sekolah Dasar di Kecamatan Sumedang Utara. Primary: Jurnal Pendidikan Guru Sekolah Dasar, 7(2), 211. https://doi.org/10.33578/jpfkip.v7i2.6265

Hasanah, D. W., Mulyani, S., & Widhiyanti, T. (2024). Multiple Representations Analysis of Chemical Bonding Concepts in General Chemistry Books. KnE Social Sciences. https://doi.org/10.18502/kss.v9i8.15554

Hikmayanti, M., & Utami, L. (2019). Analisis Kemampuan Multiple Representasi Siswa Kelas XI MAN 1 Pekanbaru pada Materi Titrasi Asam Basa. JRPK: Jurnal Riset Pendidikan Kimia, 9(1), 52–57. https://doi.org/10.21009/jrpk.091.07

Hohol, M., Willmes, K., Nęcka, E., Brożek, B., Nuerk, H.-C., & Cipora, K. (2020). Professional Mathematicians Do Not Differ from Others in the Symbolic Numerical Distance and Size Effects. Scientific Reports, 10(1), 11531. https://doi.org/10.1038/s41598-020-68202-z

Kohse-Höinghaus, K. (2023). Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews, 123(8), 5139–5219. https://doi.org/10.1021/acs.chemrev.2c00828

Kutscher, T., & Eid, M. (2020). The Effect of Rating Scale Length on the Occurrence of Inappropriate Category Use for the Assessment of Job Satisfaction: An Experimental Online Study. Journal of Well-Being Assessment, 4(1), 1–35. https://doi.org/10.1007/s41543-020-00024-2

Kyriazos, T. A., & Stalikas, A. (2018). Applied Psychometrics: The Steps of Scale Development and Standardization Process. Psychology, 09(11), 2531–2560. https://doi.org/10.4236/psych.2018.911145

Lazou, C., & Tsinakos, A. (2023). Critical Immersive-Triggered Literacy as a Key Component for Inclusive Digital Education. Education Sciences, 13(7), 696. https://doi.org/10.3390/educsci13070

Mujibaturrahmi, M., Winarni, S., & Hanum, L. (2022). Patterns of Students’ Macroscopic, Submicroscopic, and Symbolic Representation Ability in Acid-Base Topic. EduChemia (Jurnal Kimia dan Pendidikan), 7(2), 204. https://doi.org/10.30870/educhemia.v7i2.14250

Nadeem, M., Oroszlanyova, M., & Farag, W. (2023). Effect of Digital Game-Based Learning on Student Engagement and Motivation. Computers, 12(9), 177. https://doi.org/10.3390/computers12090177

Nukila, M., Muharini, R., Sartika, R. P., Hairida, H., & Lestari, I. (2022). Pengembangan E-Suplemen Berbasis Multirepresentasi pada Materi Hidrokarbon. Edukatif: Jurnal Ilmu Pendidikan, 4(4), 5970–5987. https://doi.org/10.31004/edukatif.v4i4.3071

Ott, N., Brünken, R., Vogel, M., & Malone, S. (2018). Multiple Symbolic Representations: The Combination of Formula and Text Supports Problem Solving in the Mathematical Field of Propositional Logic. Learning and Instruction, 58, 88–105. https://doi.org/10.1016/j.learninstruc.2018.04.010

Purwanto, K. K. (2021). Analysis on Students’ Understanding of Hydrocarbon Compounds in Organic Chemistry II Course. EduChemia (Jurnal Kimia dan Pendidikan), 6(2), 219. https://doi.org/10.30870/educhemia.v6i2.10727

Putri, D. N. A., Epinur, E., & Muhaimin, M. (2019). Pengembangan E-Magazine Materi Kesetimbangan Kimia di SMAN 1 Kota Jambi. Journal of The Indonesian Society of Integrated Chemistry, 11(1), 10–19. https://doi.org/10.22437/jisic.v11i1.6733

Radmehr, F., & Drake, M. (2020). Exploring Students’ Metacognitive Knowledge: The Case of Integral Calculus. Education Sciences, 10(3), 55. https://doi.org/10.3390/educsci10030055

Rahmawati, S. Y. D., Ashadi, A., & Susilowati, E. (2018). Student’s Profile about Critical Thinking Ability on Hydrocarbon Compounds Concept. AIP Conference Proceedings, 2014(January). https://doi.org/10.1063/1.5054451

Rahmawati, Y., Dianhar, H., & Arifin, F. (2021). Analysing Students’ Spatial Abilities in Chemistry Learning Using 3D Virtual Representation. Education Sciences, 11(4), 185. https://doi.org/10.3390/educsci11040185

Sim, J. H., & Daniel, E. G. S. (2014). Representational Competence in Chemistry: A Comparison between Students with Different Levels of Understanding of Basic Chemical Concepts and Chemical Representations. Cogent Education, 1(1), 991180. https://doi.org/10.1080/2331186X.2014.991180

Sokrat, H., Tamani, S., Moutaabbid, M., & Radid, M. (2014). Difficulties of Students from the Faculty of Science with Regard to Understanding the Concepts of Chemical Thermodynamics. Procedia - Social and Behavioral Sciences, 116, 368–372. https://doi.org/10.1016/j.sbspro.2014.01.223

Sulastri, S., Rusman, R., & Arifa, A. (2018). Pengembangan Soal-Soal Kimia Bermuatan Nilai-Nilai untuk Memperkokoh Karakter Siswa SMA. JTK (Jurnal Tadris Kimiya), 3(2), 171–181. https://doi.org/10.15575/jtk.v3i2.3512

Susac, A., Bubic, A., Vrbanc, A., & Planinic, M. (2014). Development of Abstract Mathematical Reasoning: The Case of Algebra. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00679

Talanquer, V. (2011). Macro, Submicro, and Symbolic: The Many Faces of the Chemistry “Triplet.” International Journal of Science Education, 33(2), 179–195. https://doi.org/10.1080/09500690903386435

Tomlinson, A., Simpson, A., & Killingback, C. (2023). Student Expectations of Teaching and Learning When Starting University: A Systematic Review. Journal of Further and Higher Education, 47(8), 1054–1073. https://doi.org/10.1080/0309877X.2023.2212242

Widianingtiyas, L., Siswoyo, S., & Bakri, F. (2015). Pengaruh Pendekatan Multi Representasi dalam Pembelajaran Fisika Terhadap Kemampuan Kognitif Siswa SMA. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 01(1), 31–38. https://doi.org/10.21009/1.01105

Wiyarsi, A., Sutrisno, H., & Rohaeti, E. (2018). The Effect of Multiple Representation Approach on Students’ Creative Thinking Skills: A Case of “Rate of Reaction” Topic. Journal of Physics: Conference Series, 1097(1). https://doi.org/10.1088/1742-6596/1097/1/012054

Wulandari, I., Irwansyah, F. S., Farida, I., & Ramdhani, M. A. (2019). Development of Student’s Submicroscopic Representation Ability on Molecular Geometry Material Using Augmented Reality (AR) Media. Journal of Physics: Conference Series, 1280(3). https://doi.org/10.1088/1742-6596/1280/3/032016

Zahro’, S. F., & Ismono, I. (2021). Analisis Kemampuan Multirepresentasi Siswa pada Materi Kesetimbangan Kimia di Masa Pandemi Covid-19. Chemistry Education Practice, 4(1), 30. https://doi.org/10.29303/cep.v4i1.2338

Author Biographies

Hani Amifelia, Universitas Tanjungpura

Author Origin : Indonesia

Hairida, Universitas Tanjungpura

Author Origin : Indonesia

Maria Ulfah, Universitas Tanjungpura

Author Origin : Indonesia

Erlina, Universitas Tanjungpura

Author Origin : Indonesia

Ira Lestari, Universitas Tanjungpura

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Amifelia, H., Hairida, Ulfah, M., Erlina, & Lestari, I. (2024). Description of Students’ Multirepresentation Ability on Hydrocarbon Material at SMA Negeri 1 Sungai Kunyit. Jurnal Penelitian Pendidikan IPA, 10(7), 3587–3596. https://doi.org/10.29303/jppipa.v10i7.4762