Analysis of The Addition Polypropylene Fibre and 8670 Mn Viscocrete added Material on The Split Tensile Strength and Modulus of Elasticity of Concrete

Authors

Fahrizal Zulkarnain , Rizki Efrida , Sri Frapanti

DOI:

10.29303/jppipa.v9i10.4808

Published:

2023-10-25

Issue:

Vol. 9 No. 10 (2023): October

Keywords:

Additive 8670 Mn, Modulus of Elasticity, Polypropylene Fibre, Tensile Strength

Research Articles

Downloads

How to Cite

Zulkarnain, F. ., Efrida, R., & Frapanti, S. (2023). Analysis of The Addition Polypropylene Fibre and 8670 Mn Viscocrete added Material on The Split Tensile Strength and Modulus of Elasticity of Concrete . Jurnal Penelitian Pendidikan IPA, 9(10), 8798–8806. https://doi.org/10.29303/jppipa.v9i10.4808

Downloads

Metrics

PDF views
115
Oct 25 '23Oct 28 '23Oct 31 '23Nov 01 '23Nov 04 '23Nov 07 '23Nov 10 '23Nov 13 '23Nov 16 '23Nov 19 '23Nov 22 '238
|

Abstract

This study used waste coconut fibre and HDPE plastic as partial aggregate replacement materials. Coconut fibre ash has pozzolanic properties, which contain high silicate elements. High-density polyethene (HDPE) plastic has more potent, complex, opaque material properties and is more resistant to high temperatures. Superplasticizer is an admixture added to concrete during mixing and during placing to improve its strength performance. This study aims to study the effect of adding HDPE plastic as a substitute for coarse aggregate, coconut fibre ash as a substitute for fine aggregate and Viscrocrete-8670 MN on absorption, concrete compressive strength and elastic modulus of concrete. With variations in the addition of BN HDPE plastic, 0.5%, 1%, and 1.5%, the coarse aggregate passed 3/8 filter retained by filter no 4, 3% coconut fibre ash for each variation of concrete and Viscrocrete-8670 MN by 0.8% by weight of cement. The maximum value for each concrete test is the absorption value of concrete (4.23% for regular concrete), compressive strength (32.49 MPa for 1.5% HDPE concrete), and the modulus of elasticity (3152 MPa for 1.5% HDPE concrete).

References

Abbas, S. N., Qureshi, M. I., Abid, M. M., Tariq, M. A. U. R., & Ng, A. W. M. (2022). An Investigation of Mechanical Properties of Concrete by Applying Sand Coating on Recycled High-Density Polyethylene (HDPE) and Electronic-Wastes (E-Wastes) Used as a Partial Replacement of Natural Coarse Aggregates. Sustainability, 14(7), 4087. https://doi.org/10.3390/su14074087

Affandy, N. A., & Bukhori, A. I. (2019). Pengaruh Penambahan Abu Serabut Kelapa Terhadap Kuat Tekan Beton. UKaRsT, 3(2), 150–158. https://core.ac.uk/download/pdf/276539884.pdf

Ahmed, H. U., Faraj, R. H., Hilal, N., Mohammed, A. A., & Sherwani, A. F. H. (2021). Use of recycled fibers in concrete composites: A systematic comprehensive review. Composites Part B: Engineering, 215, 108769. https://doi.org/10.1016/j.compositesb.2021.108769

Alkhaly, Y. R., & Syahfitri, M. (2017). Studi Eksperimen Penggunaan Abu Ampas Kopi Sebagai Material Pengganti Parsial Semen Pada Pembuatan Beton. TERAS JURNAL: Jurnal Teknik Sipil, 6(2), 101–110. https://doi.org/10.29103/tj.v6i2.100

Alluhri, S. B. (2016). Pengaruh Agregat Kasar Batu Pecah Bergradasi Seragam Terhadap Kuat Tekan Beton Normal. Jurnal Teknik Sipil Institut Teknologi Padang, 3(1), 32–39. https://doi.org/10.21063/jts.2016.V301.032-39

Aocharoen, Y., & Chotickai, P. (2021). Compressive mechanical properties of cement mortar containing recycled high-density polyethylene aggregates: Stress--strain relationship. Case Studies in Construction Materials, 15, e00752. https://doi.org/10.1016/j.cscm.2021.e00752

Bachtiar, E. O., Ritter, V. C., & Gall, K. (2021). Structure-property relationships in 3D-printed poly (l-lactide-co-$varepsilon$-caprolactone) degradable polymer. Journal of the Mechanical Behavior of Biomedical Materials, 121, 104650. https://doi.org/10.1016/j.jmbbm.2021.104650

Boni, L., Nasrul, & Talanipa, R. (2019). Pemanfaatan limbah gergaji sebagai bahan subtitusi pasir sabulakoa terhadap campuran mortar. STABILITA, 7(1), 31–38. https://doi.org/10.55679/jts.v7i1.6287

Budiman, B. (2023). Assessment of Stone Ash as a Fine Aggregate Material to Meet the Value of Normal Concrete Compressive Strength. Materials Science Forum, 1091, 151–159. https://doi.org/10.4028/p-n0hg2n

Chakkamalayath, J., Abdulsalam, M., & Al-Bahar, S. (2022). Compatibility of superplasticizers with cement paste and concrete mixes containing Type I and Type V cement, and volcanic ash. Innovative Infrastructure Solutions, 7(4), 259. https://doi.org/10.1007/s41062-022-00855-3

Fujianti, I. P. (2022). Analisis Penambahan Polypropylene Fiber Dan Bahan Tambah Viscocrete 8670 Mn Terhadap Kuat Tarik Belah Dan Modulus Elastisitas Beton (Studi Penelitian). Doctoral dissertation. Retrieved from http://repository.umsu.ac.id/handle/123456789/19199

Ginting, A. (2019). Comparison of compressive strength and porosity of porous concrete using the coarse aggregates graded uniform with continuous gradient. Journal of Physics: Conference Series, 1175(1), 12020. https://doi.org/10.1088/1742-6596/1175/1/012020

Humbert, P. S., Gomes, J. P. D. C., Bernardo, L. F. A., Pinto, C. M., & Paszek, N. (2019). Elastic modulus and stress-strain curve analysis of a tungsten mine waste alkali-activated concrete. MATEC Web of Conferences, 274, 2003. https://doi.org/10.1051/matecconf/201927402003

Junwei, Z., Shijie, L., & Hongjian, P. (2021). Experimental investigation of multiscale hybrid fibres on the mechanical properties of high-performance concrete. Construction and Building Materials, 299, 123895. https://doi.org/10.1016/j.conbuildmat.2021.123895

Khalel, H., Khan, M., Starr, A., Khan, K. A., & Muhammad, A. (2021). Performance of engineered fibre reinforced concrete (EFRC) under different load regimes: A review. Construction and Building Materials, 306, 124692. https://doi.org/10.1016/j.conbuildmat.2021.124692

Khonado, M. F., Manalip, H., & Wallah, S. E. (2019). Kuat tekan dan permeabilitas beton porous dengan variasi ukuran agregat. Jurnal Sipil Statik, 7(3). Retrieved from https://ejournal.unsrat.ac.id/v3/index.php/jss/article/view/23385

Li, Y., Mu, J., Wang, Z., Liu, Y., & Du, H. (2021). Numerical simulation on slump test of fresh concrete based on lattice Boltzmann method. Cement and Concrete Composites, 122, 104136. https://doi.org/10.1016/j.cemconcomp.2021.104136

Pratomo, E. P. (2016). Pengaruh gradasi terhadap porositas dan kuat tekan beton berpori. UNS (Sebelas Maret University). Retrieved from https://digilib.uns.ac.id/dokumen/detail/51938

Purnomo, M. R. A., & Dewi, I. H. S. (2016). A manufacturing quality assessment model based-on two stages interval type-2 fuzzy logic. IOP Conference Series: Materials Science and Engineering, 105(1), 12044. https://doi.org/10.1088/1757-899X/105/1/012044

Ragavendra, S., Reddy, I. P., & Dongre, A. (2017). Fibre reinforced concrete-A case study. Proceedings of the Architectural Engineering Aspect for Sustainable Building Envelopes, Hyderabad, India, 10–11. Retrieved from https://www.researchgate.net/profile/Archanaa-Dongre/publication/321937230_FIBRE_REINFORCED_CONCRETE-_A_CASE_STUDY/links/5a39f106458515889d2ae1f4/FIBRE-REINFORCED-CONCRETE-A-CASE-STUDY.pdf

Rommel, A. S., Rijsdijk, F., Greven, C. U., Asherson, P., & Kuntsi, J. (2015). A longitudinal twin study of the direction of effects between ADHD symptoms and IQ. PloS One, 10(4), e0124357. https://doi.org/10.1371/journal.pone.0124357

Salah, N., Alfawzan, A. M., Saeed, A., Alshahrie, A., & Allafi, W. (2019). Effective reinforcements for thermoplastics based on carbon nanotubes of oil fly ash. Scientific Reports, 9(1), 20288. Retrieved from https://www.nature.com/articles/s41598-019-56777-1

Shaikh, F. U. A., Luhar, S., Arel, H. cSahan, & Luhar, I. (2020). Performance evaluation of Ultrahigh performance fibre reinforced concrete--A review. Construction and Building Materials, 232, 117152. https://doi.org/10.1016/j.conbuildmat.2019.117152

Tampi, R., Parung, H., Djamaluddin, R., & Amiruddin, A. (2020). Elasticity modulus concrete of abaca fiber. IOP Conference Series: Earth and Environmental Science, 473(1), 12146. https://doi.org/10.1088/1755-1315/473/1/012146

Tavakoli, D., Hashempour, M., Heidari, A., & others. (2018). Use of waste materials in concrete: A review. Pertanika J. Sci. Technol, 26(2), 499–522. Retrieved from http://www.pertanika.upm.edu.my/resources/files/Pertanika%20PAPERS/JST%20Vol.%2026%20(2)%20Apr.%202018/02%20JST%20Vol%2026%20(2)%20Apr%202018_JST-0849-2017_pg499-522.pdf

Tomayahu, Y. (2016). Analisa Agregat Terhadap Kuat Tekan Beton Pada Pembangunan Jalan Isimu-Paguyaman (Pavement Rigid). RADIAL: Jurnal Peradaban Sains, Rekayasa Dan Teknologi, 4(2), 139–146. https://doi.org/10.37971/radial.v4i2.132

Umar, U. H. (2019). Analisis Kuat Tekan Beton dengan Serbuk Kayu Jati. Journal of Civil Engineering and Planning, 1(1), 20–25. Retrieved from http://repository.uib.ac.id/2462/

Wibowo, N. I. (2018). Pengaruh Serbuk Gergaji Kayu Sebagai Substitusi Sebagian Semen Dan Bahan Tambah 0, 6% Bestmittel Terhadap Karakteristik Beton. Universitas Indonesia. Retrieved from https://dspace.uii.ac.id/handle/123456789/11975

Wimaya, S., Ridwan, A., & Winarto, S. (2020). Modifikasi Beton Fc 9, 8 Mpa Menggunakan Abu Ampas Kopi. J. Manaj. Teknol. Tek. Sipil, 3(2), 234. https://doi.org/10.30737/jurmateks.v3i2.1096

Zendrato, H. N. (2022). Analisis Substitusi Plastik Hdpe Dan Abu Sabut Kelapa Dengan Bahan Tambah Viscocrete 8670 MN Terhadap Absorbsi, Kuat Tekan dan Modulus Elastisitas Beton. Doctoral dissertation. Retrieved from http://repository.umsu.ac.id/handle/123456789/26/browse?type=author&value=ZENDRATO%2C+HILDA+NISTI

Author Biographies

Fahrizal Zulkarnain, Faculty of Engineering, Universitas Muhammadiyah Sumatera Utara, Indonesia

Rizki Efrida, Faculty of Engineering, Universitas Muhammadiyah Sumatera Utara, Indonesia.

Sri Frapanti, Faculty of Engineering, Universitas Muhammadiyah Sumatera Utara, Indonesia.

License

Copyright (c) 2023 Fahrizal Zulkarnain

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).