The Influence of Electrospinning Process Parameters of Polyvinylidene Fluoride and Polyacrylonitrile (PVDF/PAN) Nanofiber Composites

Authors

Ida Sriyanti , Muhammad Rama Almafie , Rahma Dani , Meutia Kamilatun Nuha Ap Idjan , Radiyati Umi Partan , M Rudi Sanjaya , Jaidan Jauhari

DOI:

10.29303/jppipa.v9i9.4840

Published:

2023-09-25

Issue:

Vol. 9 No. 9 (2023): September

Keywords:

Concentration, Distance tip, Flow rate, High voltage, Homogeneity

Research Articles

Downloads

How to Cite

Sriyanti, I., Almafie, M. R., Dani, R., Idjan, M. K. N. A. ., Partan, R. U. ., Sanjaya, M. R., & Jauhari, J. (2023). The Influence of Electrospinning Process Parameters of Polyvinylidene Fluoride and Polyacrylonitrile (PVDF/PAN) Nanofiber Composites. Jurnal Penelitian Pendidikan IPA, 9(9), 7159–7169. https://doi.org/10.29303/jppipa.v9i9.4840

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

PAN cannot be used as a stand-alone nanofiber, so it needs to be modified through copolymerization with other polymers, such as PVDF. It is composite mutually beneficial for both PVDF/PAN polymers. Study aims to see the effect of process parameters, such as voltage, flow rate and needle tip distance of PVDF/PAN composite nanofiber as well as molecular interaction and crystal structure, to confirm the presence of polymer in the nanofiber composite. The nanofibers with solution parameters PN1: PVDF 6% and PAN 8%, PN2: PVDF 6% and PAN 10%, and PN3: PVDF 6% and PAN 12% were prepared using electrospinning. Morphology of the process parameters of voltage (12kV, 16kV, 18kV), flow rate (30 μl/min, 60 μl/min, 90 μl/min) and needle tip distance (75 mm, 100 mm, 125 mm) were observed. The results showed straight and continuous fibre morphology, with a smooth surface and no beaded structure, with homogeneous fibre distribution with an increase in diameter from 394 ± 79 nm (NF1) to 851 ± 89 nm (NF3). The optimal state was in the solution of PN2: PAN 10% (w/w) and PVDF 6% (w/w), High Voltage 12 kV, Flow Rate PN3: 60 μl/min, and Needle to Collector Distance 75 mm.

References

Agarwal, S., Greiner, A., & Wendorff, J. H. (2013). Functional materials by electrospinning of polymers. Progress in Polymer Science, 38, 963–991. https://doi.org/10.1016/j.progpolymsci.2013.02.001

Ahmadian, A., Shafiee, A., Aliahmad, N., & Agarwal, M. (2021). Overview of Nano-Fiber Mats Fabrication via Electrospinning and Morphology Analysis. Textiles, 1, 206–226. https://doi.org/10.3390/textiles1020010

Al-Abduljabbar, A., & Farooq, I. (2023). Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers, 15(1). https://doi.org/10.3390/polym15010065

Al-Husaini, I. S., Lau, W. J., Yusoff, A. R. M., Al-Abri, M. Z., & Farsi, B. A. Al. (2021). Synthesis of functional hydrophilic polyethersulfone-based electrospun nanofibrous membranes for water treatment. Journal of Environmental Chemical Engineering, 9(1), 104728. https://doi.org/10.1016/j.jece.2020.104728

Almafie, M. R., Marlina, L., Riyanto, R., Jauhari, J., Nawawi, Z., & Sriyanti, I. (2022). Dielectric Properties and Flexibility of Polyacrylonitrile/Graphene Oxide Composite Nanofibers. ACS Omega, 7(37), 33087–33096. https://doi.org/10.1021/acsomega.2c03144

Baykara, T., & Taylan, G. (2021). Coaxial electrospinning of PVA/Nigella seed oil nanofibers: Processing and morphological characterization. Materials Science and Engineering: B, 265, 115012. https://doi.org/https://doi.org/10.1016/j.mseb.2020.115012

Bhute, M. V, & Kondawar, S. B. (2019). Electrospun poly(vinylidene fluoride)/cellulose acetate/AgTiO2 nanofibers polymer electrolyte membrane for lithium ion battery. Solid State Ionics, 333, 38–44. https://doi.org/https://doi.org/10.1016/j.ssi.2019.01.019

Černohorský, P., Pisarenko, T., Papež, N., Sobola, D., Ţălu, Ş., Částková, K., … Sedlák, P. (2021). Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers. Materials, Vol. 14. https://doi.org/10.3390/ma14206096

Chen, P., Chai, M., Mai, Z., Liao, M., Xie, X., Lu, Z., … Zhou, W. (2022). Electrospinning polyacrylonitrile (PAN) based nanofiberous membranes synergic with plant antibacterial agent and silver nanoparticles (AgNPs) for potential wound dressing. Materials Today Communications, 31, 103336. https://doi.org/https://doi.org/10.1016/j.mtcomm.2022.103336

Chinnappan, B. A., Krishnaswamy, M., Xu, H., & Hoque, M. E. (2022). Electrospinning of Biomedical Nanofibers/Nanomembranes: Effects of Process Parameters. Polymers, Vol. 14. https://doi.org/10.3390/polym14183719

Collins, G., Federici, J., Imura, Y., & Catalani, L. H. (2012). Charge generation, charge transport, and residual charge in the electrospinning of polymers: A review of issues and complications. Journal of Applied Physics, 111(4). https://doi.org/10.1063/1.3682464

Dang, W., Liu, J., Wang, X., Yan, K., Zhang, A., Yang, J., … Liang, J. (2020). Structural transformation of polyacrylonitrile (PAN) fibers during rapid thermal pretreatment in nitrogen atmosphere. Polymers, 12(1). https://doi.org/10.3390/polym12010063

Emam, M. H., Elezaby, R. S., Swidan, S. A., Loutfy, S. A., & Hathout, R. M. (2023). Cerium Oxide Nanoparticles/Polyacrylonitrile Nanofibers as Impervious Barrier against Viral Infections. Pharmaceutics, Vol. 15. https://doi.org/10.3390/pharmaceutics15051494

Eren Boncu, T., Ozdemir, N., & Uskudar Guclu, A. (2020). Electrospinning of linezolid loaded PLGA nanofibers: effect of solvents on its spinnability, drug delivery, mechanical properties, and antibacterial activities. Drug Development and Industrial Pharmacy, 46(1), 109–121. https://doi.org/10.1080/03639045.2019.1706550

Gade, H., Nikam, S., Chase, G. G., & Reneker, D. H. (2021). Effect of electrospinning conditions on β-phase and surface charge potential of PVDF fibers. Polymer, 228, 123902. https://doi.org/https://doi.org/10.1016/j.polymer.2021.123902

Gelb, M. B., Punia, A., Sellers, S., Kadakia, P., Ormes, J. D., Khawaja, N. N., … Lamm, M. S. (2022). Effect of drug incorporation and polymer properties on the characteristics of electrospun nanofibers for drug delivery. Journal of Drug Delivery Science and Technology, 68, 103112. https://doi.org/https://doi.org/10.1016/j.jddst.2022.103112

Ghafouri, S. E., Mousavi, S. R., Khakestani, M., Mozaffari, S., Ajami, N., & Khonakdar, H. A. (2022). Electrospun nanofibers of poly (lactic acid)/poly (ε-caprolactone) blend for the controlled release of levetiracetam. Polymer Engineering & Science, 62(12), 4070–4081. https://doi.org/https://doi.org/10.1002/pen.26167

Guo, Y., Cheng, C., Huo, T., Ren, Y., & Liu, X. (2020). Highly effective flame retardant lignin/polyacrylonitrile composite prepared via solution blending and phosphorylation. Polymer Degradation and Stability, 181, 109362. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2020.109362

He, Z., Rault, F., Lewandowski, M., Mohsenzadeh, E., & Salaün, F. (2021). Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement. Polymers, Vol. 13. https://doi.org/10.3390/polym13020174

Ince Yardimci, A., Durmus, A., Kayhan, M., & Tarhan, O. (2022). Antibacterial Activity of AgNO3 Incorporated Polyacrylonitrile/Polyvinylidene Fluoride (PAN/PVDF) Electrospun Nanofibrous Membranes and Their Air Permeability Properties. Journal of Macromolecular Science, Part B, 61(6), 749–762. https://doi.org/10.1080/00222348.2022.2101970

Islam, M. S., Ang, B. C., Andriyana, A., & Afifi, A. M. (2019). A review on fabrication of nanofibers via electrospinning and their applications. SN Applied Sciences, 1(10), 1–16. https://doi.org/10.1007/s42452-019-1288-4

Jadbabaei, S., Kolahdoozan, M., Naeimi, F., & Ebadi-Dehaghani, H. (2021). Preparation and characterization of sodium alginate–PVA polymeric scaffolds by electrospinning method for skin tissue engineering applications. RSC Advances, 11(49), 30674–30688. https://doi.org/10.1039/D1RA04176B

Jauhari, J., Suharli, A. J., Nawawi, Z., & Sriyanti, I. (2021). Synthesis and Characteristics of Polyacrylonitrile (Pan) Nanofiber Membrane Using Electrospinning Method. Journal of Chemical Technology and Metallurgy, 56(4), 698–703.

Jauhari, J., Wiranata, S., Rahma, A., Nawawi, Z., & Sriyanti, I. (2019). Polyvinylpyrrolidone/cellulose acetate nanofibers synthesized using electrospinning method and their characteristics. Materials Research Express, 6(6), 64002. https://doi.org/10.1088/2053-1591/ab0b11

Jiang, J., Zheng, G., Wang, X., Li, W., Kang, G., Chen, H., … Liu, J. (2020). Arced Multi-Nozzle Electrospinning Spinneret for High-Throughput Production of Nanofibers. Micromachines, Vol. 11. https://doi.org/10.3390/mi11010027

Jin, L., Zheng, Y., Liu, Z.-K., Li, J.-S., Yi, Y.-P.-Q., Fan, Y.-Y., … Li, Y. (2020). Enhancement of β-Phase Crystal Content of Poly(vinylidene fluoride) Nanofiber Web by Graphene and Electrospinning Parameters. Chinese Journal of Polymer Science, 38(11), 1239–1247. https://doi.org/10.1007/s10118-020-2428-4

Julius, H. F. S. S. D. R. ,. (2012). APPLICATION OF PIEZOELECTRIC MATERIAL FILM PVDF (Polyvinylidene Flouride) AS LIQUID VISCOSITY SENSOR. Jurnal Neutrino, 3(2), 129–142. https://doi.org/10.18860/neu.v0i0.1648

Kenry, & Lim, C. T. (2017). Nanofiber technology: current status and emerging developments. Progress in Polymer Science, 70, 1–17. https://doi.org/10.1016/j.progpolymsci.2017.03.002

Khalil, A., Aboamera, N. M., Nasser, W. S., Mahmoud, W. H., & Mohamed, G. G. (2019). Photodegradation of organic dyes by PAN/SiO2-TiO2-NH2 nanofiber membrane under visible light. Separation and Purification Technology, 224, 509–514. https://doi.org/https://doi.org/10.1016/j.seppur.2019.05.056

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

Kishore Chand, A. A., Bajer, B., Schneider, E. S., Mantel, T., Ernst, M., Filiz, V., & Glass, S. (2022). Modification of Polyacrylonitrile Ultrafiltration Membranes to Enhance the Adsorption of Cations and Anions. Membranes, Vol. 12. https://doi.org/10.3390/membranes12060580

Koç, M., Paralı, L., & Şan, O. (2020). Fabrication and vibrational energy harvesting characterization of flexible piezoelectric nanogenerator (PEN) based on PVDF/PZT. Polymer Testing, 90, 106695. https://doi.org/https://doi.org/10.1016/j.polymertesting.2020.106695

Kusumawati, D. H., Istiqomah, K. V. N., Husnia, I., & Fathurin, N. (2021). Synthesis of nanofiber polyvinyl alcohol (PVA) with electrospinning method. Journal of Physics: Conference Series, 2110(1). https://doi.org/10.1088/1742-6596/2110/1/012010

Latiffah, E., Agung, B. H., Hapidin, D. A., & Khairurrijal, K. (2022). Fabrication of Polyvinylpyrrolidone (PVP) Nanofibrous Membranes using Mushroom-Spinneret Needleless Electrospinning. Journal of Physics: Conference Series, 2243(1). https://doi.org/10.1088/1742-6596/2243/1/012101

Lee, S., Bui-Vinh, D., Baek, M., Kwak, D. Bin, & Lee, H. (2023). Modeling pressure drop values across ultra-thin nanofiber filters with various ranges of filtration parameters under an aerodynamic slip effect. Scientific Reports, 13(1), 1–14. https://doi.org/10.1038/s41598-023-32765-4

Li, Y., Liao, C., & Tjong, S. C. (2019). Electrospun polyvinylidene fluoride-based fibrous scaffolds with piezoelectric characteristics for bone and neural tissue engineering. Nanomaterials, 9(7). https://doi.org/10.3390/nano9070952

Liang, Q., Pan, W., & Gao, Q. (2021). Preparation of carboxymethyl starch/polyvinyl-alcohol electrospun composite nanofibers from a green approach. International Journal of Biological Macromolecules, 190, 601–606. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.09.015

Lim, S. J., & Shin, I. H. (2020). Graft copolymerization of GMA and EDMA on PVDF to hydrophilic surface modification by electron beam irradiation. Nuclear Engineering and Technology, 52(2), 373–380. https://doi.org/https://doi.org/10.1016/j.net.2019.07.018

Liyanage, A. A. H., Biswas, P. K., Dalir, H., & Agarwal, M. (2023). Engineering uniformity in mass production of MWCNTs/epoxy nanofibers using a lateral belt-driven multi-nozzle electrospinning technique to enhance the mechanical properties of CFRPs. Polymer Testing, 118, 107883. https://doi.org/https://doi.org/10.1016/j.polymertesting.2022.107883

Machín, A., Fontánez, K., Arango, J. C., Ortiz, D., De León, J., Pinilla, S., … Márquez, F. (2021). One-dimensional (1d) nanostructured materials for energy applications. Materials, 14(10). https://doi.org/10.3390/ma14102609

Mahdavi Varposhti, A., Yousefzadeh, M., Kowsari, E., & Latifi, M. (2020). Enhancement of β-Phase Crystalline Structure and Piezoelectric Properties of Flexible PVDF/Ionic Liquid Surfactant Composite Nanofibers for Potential Application in Sensing and Self-Powering. Macromolecular Materials and Engineering, 305(3), 1900796. https://doi.org/https://doi.org/10.1002/mame.201900796

Mohseni, M., Delavar, F., & Rezaei, H. (2021). The piezoelectric gel-fiber-particle substrate containing short PVDF-chitosan-gelatin nanofibers and mesoporous silica nanoparticles with enhanced antibacterial activity as a potential of wound dressing applications. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 58(10), 694–708. https://doi.org/10.1080/10601325.2021.1927754

Mousa, H. M., Fahmy, H. S., Abouzeid, R., Abdel-Jaber, G. T., & Ali, W. Y. (2022). Polyvinylidene fluoride-cellulose nanocrystals hybrid nanofiber membrane for energy harvesting and oil-water separation applications. Materials Letters, 306, 130965. https://doi.org/https://doi.org/10.1016/j.matlet.2021.130965

Nadirah, B. N., Ong, C. C., Saheed, M. S. M., Yusof, Y. M., & Shukur, M. F. (2020). Structural and conductivity studies of polyacrylonitrile/methylcellulose blend based electrolytes embedded with lithium iodide. International Journal of Hydrogen Energy, 45(38), 19590–19600. https://doi.org/https://doi.org/10.1016/j.ijhydene.2020.05.016

Prabu, G. T. V, & Dhurai, B. (2020). A Novel Profiled Multi-Pin Electrospinning System for Nanofiber Production and Encapsulation of Nanoparticles into Nanofibers. Scientific Reports, 10(1), 4302. https://doi.org/10.1038/s41598-020-60752-6

Rathore, P., & Schiffman, J. D. (2021). Beyond the Single-Nozzle: Coaxial Electrospinning Enables Innovative Nanofiber Chemistries, Geometries, and Applications. ACS Applied Materials & Interfaces, 13(1), 48–66. https://doi.org/10.1021/acsami.0c17706

Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9 I), 4531–4547. https://doi.org/10.1063/1.373532

Russo, F., Ursino, C., Avruscio, E., Desiderio, G., Perrone, A., Santoro, S., … Figoli, A. (2020). Innovative poly (Vinylidene fluoride) (PVDF) electrospun nanofiber membrane preparation using DMSO as a low toxicity solvent. Membranes, 10(3), 1–17. https://doi.org/10.3390/membranes10030036

Ryšánek, P., Benada, O., Tokarský, J., Syrový, M., Čapková, P., & Pavlík, J. (2019). Specific structure, morphology, and properties of polyacrylonitrile (PAN) membranes prepared by needleless electrospinning; Forming hollow fibers. Materials Science and Engineering: C, 105, 110151. https://doi.org/https://doi.org/10.1016/j.msec.2019.110151

Saha, S., Yauvana, V., Chakraborty, S., & Sanyal, D. (2019). Synthesis and characterization of polyvinylidene-fluoride (PVDF) nanofiber for application as piezoelectric force sensor. Materials Today: Proceedings, 18, 1450–1458. https://doi.org/10.1016/j.matpr.2019.06.613

Sanchaniya, J. V., & Kanukuntla, S. (2023). Morphology and mechanical properties of PAN nanofiber mat. Journal of Physics: Conference Series, 2423(1). https://doi.org/10.1088/1742-6596/2423/1/012018

Sengor, M., Ozgun, A., Gunduz, O., & Altintas, S. (2020). Aqueous electrospun core/shell nanofibers of PVA/microbial transglutaminase cross-linked gelatin composite scaffolds. Materials Letters, 263, 127233. https://doi.org/https://doi.org/10.1016/j.matlet.2019.127233

Singh, R., Janakiraman, S., Khalifa, M., Anandhan, S., Ghosh, S., Venimadhav, A., & Biswas, K. (2020). A high thermally stable polyacrylonitrile (PAN)-based gel polymer electrolyte for rechargeable Mg-ion battery. Journal of Materials Science: Materials in Electronics, 31(24), 22912–22925. https://doi.org/10.1007/s10854-020-04818-1

Sorkhabi, T. S., Samberan, M. F., Ostrowski, K. A., Zajdel, P., Stempkowska, A., & Gawenda, T. (2022). Electrospinning of Poly (Acrylamide), Poly (Acrylic Acid) and Poly (Vinyl Alcohol) Nanofibers: Characterization and Optimization Study on the Effect of Different Parameters on Mean Diameter Using Taguchi Design of Experiment Method. Materials, Vol. 15. https://doi.org/10.3390/ma15175876

Sriyanti, I., Edikresnha, D., Rahma, A., Munir, M. M., Rachmawati, H., & Khairurrijal, K. (2017). Correlation between Structures and Antioxidant Activities of Polyvinylpyrrolidone/Garcinia mangostana L. Extract Composite Nanofiber Mats Prepared Using Electrospinning. Journal of Nanomaterials, 2017, 9687896. https://doi.org/10.1155/2017/9687896

Sriyanti, I., Marlina, L., Fudholi, A., Marsela, S., & Jauhari, J. (2021). Physicochemical properties and In vitro evaluation studies of polyvinylpyrrolidone/cellulose acetate composite nanofibres loaded with Chromolaena odorata (L) King extract. Journal of Materials Research and Technology, 12, 333–342. https://doi.org/https://doi.org/10.1016/j.jmrt.2021.02.083

Tan, S. H., Inai, R., Kotaki, M., & Ramakrishna, S. (2005). Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer, 46(16), 6128–6134. https://doi.org/10.1016/j.polymer.2005.05.068

Thorat, Y. V, Chavan, S. S., & Mohite, D. D. (2022). Electro spun PAN Nanofiber with Optimized Diameter. Journal of Algebraic Statistics, 13(2), 1447–1454.

Wang, X., & Nakane, K. (2020). Preparation of polymeric nanofibers via immersion electrospinning. European Polymer Journal, 134, 109837. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2020.109837

Weret, M. A., Jeffrey Kuo, C.-F., Zeleke, T. S., Beyene, T. T., Tsai, M.-C., Huang, C.-J., … Hwang, B.-J. (2020). Mechanistic understanding of the Sulfurized-Poly(acrylonitrile) cathode for lithium-sulfur batteries. Energy Storage Materials, 26, 483–493. https://doi.org/https://doi.org/10.1016/j.ensm.2019.11.022

Xu, L. (å¾ç£Š), Lv, J. (å•å¨‡), Wang, X. (王翔), & Qu, W. (屈文涛). (2023). Wave propagation of bending jet in electrospinning process. AIP Advances, 13(4), 45218. https://doi.org/10.1063/5.0126064

Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications [Review-article]. Chemical Reviews, 119(8), 5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593

Zhang, C., Li, R., Liu, J., Guo, S., Xu, L., Xiao, S., & Shen, Z. (2019). Hydrogen peroxide modified polyacrylonitrile-based fibers and oxidative stabilization under microwave and conventional heating – The 1st comparative study. Ceramics International, 45(10), 13385–13392. https://doi.org/https://doi.org/10.1016/j.ceramint.2019.04.035

Zhang, S., Zhang, B., Zhang, J., & Ren, K. (2021). Enhanced Piezoelectric Performance of Various Electrospun PVDF Nanofibers and Related Self-Powered Device Applications. ACS Applied Materials & Interfaces, 13(27), 32242–32250. https://doi.org/10.1021/acsami.1c07995

Author Biographies

Ida Sriyanti, Physics Education, Universitas Sriwijaya, Palembang-Prabumulih Street KM.32, Indralaya 30662, ID, Indonesia

Muhammad Rama Almafie, Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, Indonesia.

Rahma Dani, Physics Education, Faculty of Education, Universitas Sriwijaya, Indralaya, Indonesia.

Meutia Kamilatun Nuha Ap Idjan, Universitas Sriwijaya

Radiyati Umi Partan, Medicine, Faculty of Medicine, Universitas Sriwijaya, Indralaya 30662, ID Indonesia.

M Rudi Sanjaya, Laboratory of Instrumentation and Nanotechnology Applications, Faculty of Computer Science, Universitas Sriwijaya, Indralaya, Indonesia.

Jaidan Jauhari, Laboratory of Instrumentation and Nanotechnology Applications, Faculty of Computer Science, Universitas Sriwijaya, Indralaya, Indonesia.

License

Copyright (c) 2023 Ida Sriyanti, Muhammad Rama Almafie, Rahma Dani, Meutia Kamilatun Nuha Ap Idjan, Radiyati Umi Partan, M Rudi Sanjaya, Jaidan Jauhari

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).