Effect of Different Energy Sources on Silage of Dwarf Elephant Grass (Pennisetum Purpureum Cv. Mott) on Digestibility and Rumen Fluid Fermentation Parameters
DOI:
10.29303/jppipa.v9i9.4988Published:
2023-09-25Issue:
Vol. 9 No. 9 (2023): SeptemberKeywords:
Digestibility and Rumen Fluid Fermentation Parameters, Energy, Pennisetum Purpureum Cv. MottResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
The development of mini elephant grass is an alternative in providing forage because this grass is a superior type of grass. This paper informs about the morphological characteristics and their advantages as a source of feed and their processing to meet the needs of ruminant feed from mini elephant grass. Mini elephant grass (Pennisetum purpureum cv. Mott) is easily distinguished from elephant grass (P. purpureum) in terms of its morphology. Mini elephant grass has several advantages compared to elephant grass in terms of fast growth and regrowth, ratio of leaves to stems, protein content and high production of dry matter. This grass can be used in grazing and cut and carry systems. In addition, this grass can be given in the form of silage or dry (hay). Processing mini elephant grass through fermentation technology is recommended when production is abundant, so that it can be utilized during the dry season when forage availability is limited. The use of energy sources of 5% such as rice bran, cassava and sago pulp in odot grass silage results in a better quality of the chemical composition of odot grass silage and can increase KcBK, KcBO, VFA, and rumen fluid pH. While the use of rice bran as an energy source can increase the parameters of NH₃ fermentation
References
Ajayi, F. T. (2011). Effects of feeding ensiled mixtures of elephant grass (Pennisetum purpureum) with three grain legume plants on digestibility and nitrogen balance of West African Dwarf goats. Livestock Science, 142(1–3), 80–84. https://doi.org/10.1016/j.livsci.2011.06.020
Anjum, F., Pasha, I., Bugti, M., & Butt, M. (2007). Mineral composition of different rice varieties and their milling fractions. Pakistan J. Agric. Sci, 44(2), 332–336. http://pakjas.com.pk/papers/336.pdf
Astutik, A. S., Irsyammawati, A., & Ndaru, P. H. (2019). Pengaruh Silase Rumput Odot (Pennisetum purpureum cv. Mott) dengan Penambahan Bakteri Lactobacillus plantarum Terhadap Produksi Gas dan Kecernaan Secara In Vitro. Jurnal Nutrisi Ternak Tropis, 2(1), 10–18. https://doi.org/10.21776/ub.jnt.2019.002.01.2
Ãvila, C. L. S., & Carvalho, B. F. (2020). Silage fermentation—updates focusing on the performance of micro-organisms. Journal of Applied Microbiology, 128(4), 966–984. https://doi.org/10.1111/jam.14450
Cakmak, I. (2002). Plant nutrition research: Priorities to meet human needs for food in sustainable ways BT - Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium: Food security and sustainability of agro-ecosystems through basi. Plant and Soi, 247(1), 3–24. https://doi.org/10.1007/978-94-017-2789-1_1
Campos, B. B., Diniz, R. H. S., Da Silveira, F. A., Ribeiro Júnior, J. I., Fietto, L. G., MacHado, J. C., & Da Silveira, W. B. (2019). Elephant grass (pennisetum purpureum schumach) is a promising feedstock for ethanol production by the thermotolerant yeast kluyveromyces marxianus CCT 7735. Brazilian Journal of Chemical Engineering, 36(1), 43–49. https://doi.org/10.1590/0104-6632.20190361s20170263
da Cunha, M. V., Lira, M. de A., dos Santos, M. V. F., de Freitas, E. V., Dubeux Junior, J. C. B., de Mello, A. C. L., & Martins, K. G. R. (2011). Associação entre caracterÃsticas morfológicas e produtivas na seleção de clones de capim-elefante. Revista Brasileira de Zootecnia, 40(3), 482–488. https://doi.org/10.1590/S1516-35982011000300004
da Silva, J. K. B., da Cunha, M. V., dos Santos, M. V. F., Magalhães, A. L. R., de Mello, A. C. L., da Silva, J. R. C., da Rocha Souza, C. I., de Carvalho, A. L., & de Souza, E. J. O. (2021). Dwarf versus tall elephant grass in sheep feed: which one is the most recommended for cut-and-carry? Tropical Animal Health and Production, 53(1), 1–14. https://doi.org/10.1007/s11250-020-02508-y
da Silva, P. H. F., Sales, T. B., Lemos, M. F., Silva, M. da C., Ribeiro, R. E. P., Dos Santos, M. V. F., de Mello, A. C. L., & da Cunha, M. V. (2021). Tall and short-sized elephant grass genotypes: Morphophysiological aspects cut-and-carry, and grazing management. Ciencia Rural, 51(9), 1–9. https://doi.org/10.1590/0103-8478cr20200848
Daher, R. F., Pereira, M. G., Pereira, A. Vander, & Amaral Jr., A. T. do. (2002). Genetic divergence among elephantgrass cultivars assessed by RAPD markers in composit samples. Scientia Agricola, 59(4), 623–627. https://doi.org/10.1590/s0103-90162002000400001
de Almeida Souza, R. T., Dos Santos, M. V. F., da Cunha, M. V., Gonçalves, G. D., da Silva, V. J., de Mello, A. C. L., Muir, J. P., Ribeiro, R. E. P., & Dubeux, J. C. B. (2021). Dwarf and tall elephantgrass genotypes under irrigation as forage sources for ruminants: Herbage accumulation and nutritive value. Animals, 11(8), 1–17. https://doi.org/10.3390/ani11082392
de Souza, P. H., Faturi, C., Rodrigues, L. F. de S., Filho, E. da S., do Rêgo, A. C., & Filho, J. A. R. (2017). Nutritional value of elephant grass genotypes. Pesquisa Agropecuaria Brasileira, 52(10), 951–955. https://doi.org/10.1590/S0100-204X2017001000016
Fahey, G. C., Novotny, L., Layton, B., & Mertens, D. R. (2019). Critical factors in determining fiber content of feeds and foods and their ingredients. Journal of AOAC International, 102(1), 52–62. https://doi.org/10.5740/jaoacint.18-0067
Gao, L., Yan, Q., Li, J., Pang, T., Lu, L., Yi, X., Jones, C. S., & Zhang, J. (2022). Elephant grass supplementation in the feed of fattening pigs affects growth performance, carcass characteristics, blood profiles and intestinal microorganisms. Frontiers in Animal Science, 3, 1–12. https://doi.org/10.3389/fanim.2022.911692
Gaspersz, V. 1991. Metoda perancangan percobaan untuk ilmu-ilmu pertanian, ilmu-ilmu teknik dan biologi. CV. Armico. Bandung. 472 p
Han, H., Wang, C., Huang, Z., Zhang, Y., Sun, L., Xue, Y., & Guo, X. (2022). Effects of Lactic Acid Bacteria-Inoculated Corn Silage on Bacterial Communities and Metabolites of Digestive Tract of Sheep. Fermentation, 8(7), 1–14. https://doi.org/10.3390/fermentation8070320
Kucharska, K., Rybarczyk, P., HoÅ‚owacz, I., Åukajtis, R., Glinka, M., & KamiÅ„ski, M. (2018). Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules, 23(11), 1–32. https://doi.org/10.3390/molecules23112937
Kung, L., Shaver, R. D., Grant, R. J., & Schmidt, R. J. (2018). Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(5), 4020–4033. https://doi.org/10.3168/jds.2017-13909
Lemos, M. F., de Mello, A. C. L., Guim, A., da Cunha, M. V., da Silva, P. H. F., Atroch, T. M. A., Neto, D. E. S., Neto, P. M. D. O., Medeiros, A. S., & Clemente, J. V. F. (2021). Grass size and butterfly pea inclusion modify the nutritional value of elephant grass silage. Pesquisa Agropecuaria Brasileira, 56, 1–10. https://doi.org/10.1590/S1678-3921.pab2021.v56.02409
Manyi-Loh, C. E., & Lues, R. (2023). Anaerobic Digestion of Lignocellulosic Biomass: Substrate Characteristics (Challenge) and Innovation. In Fermentation (Vol. 9, Issue 8). https://doi.org/10.3390/fermentation9080755
Mbambalala, L., Rani, Z. T., Mpanza, T. D. E., Mthana, M. S., Ncisana, L., & Mkhize, N. R. (2023). Fodder Radish as a Potential Alternative Feed Source for Livestock in South Africa. Agriculture (Switzerland), 13(8), 1–11. https://doi.org/10.3390/agriculture13081625
Morais, J. A. D. S., Sanchez, L. M. B., Kozloski, G. V., De Lima, L. D., Trevisan, L. M., Reffatti, M. V., & Cadorin, R. L. (2007). Dwarf elephant grass hay (Pennisetum purpureum Schum. cv. Mott) digestion by sheep at different levels of intake. Ciencia Rural, 37(2), 482–487. https://doi.org/10.1590/s0103-84782007000200029
Negawo, A. T., Teshome, A., Kumar, A., Hanson, J., & Jones, C. S. (2017). Opportunities for napier grass (Pennisetum purpureum) improvement using molecular genetics. Agronomy, 7(2), 1–21. https://doi.org/10.3390/agronomy7020028
Riswandi. (2014). Evaluasi Kecernaan Silase Rumput Kumpai (Hymenachne acutigluma ) dengan Penambahan Legum Turi Mini ( Sesbania rostrata ). Jurnal Peternakan Sriwijaya, 3(2), 43–52.
Sarwanto, D., Tuswati, S. E., & Sulistyaningtyas, S. (2019). The Level of Dwarf Elephant Grass (Pennisetum Purpureum cv. mott) to Substitute Indigenous Forage for Goat Feed in Limestone Mountain. IOP Conference Series: Earth and Environmental Science, 372(1), 1–6. https://doi.org/10.1088/1755-1315/372/1/012039
Sirait, J. (2018). Dwarf Elephant Grass (Pennisetum purpureum cv. Mott) as Forage for Ruminant. Indonesian Bulletin of Animal and Veterinary Sciences, 27(4), 167. https://doi.org/10.14334/wartazoa.v27i4.1569
Sofyan, A., Widyastuti, Y., Utomo, R., & Yusiati, L. M. (2017). Improving physico-chemical characteristic and palatability of king grass (Pennisetum hybrid) silage by inoculation of lactobacillus plantarum - saccharomyces cerevisiae consortia and addition of rice bran. Buletin Peternakan, 41(1), 61. https://doi.org/10.21059/buletinpeternak.v41i1.12980
Tudsri, S., Jorgensen, S. T., Riddach, P., & Pookpakdi, A. (2002). Effect of cutting height and dry season closing date on yield and quality of five napier grass cultivars in Thailand. Tropical Grasslands, 36(4), 248–252.
UrribarrÃ, L., Ferrer, A., & Colina, A. (2005). Leaf protein from ammonia-treated dwarf elephant grass (Pennisetum purpureum Schum cv. Mott). Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 122(1–3), 721–730. https://doi.org/10.1007/978-1-59259-991-2_60
Wróbel, B., Nowak, J., Fabiszewska, A., Paszkiewicz-Jasińska, A., & Przystupa, W. (2023). Dry matter losses in silages resulting from epiphytic microbiota activity—a comprehensive study. Agronomy, 13(2), 1–24. https://doi.org/10.3390/agronomy13020450
Yafetto, L. (2022). Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon, 8(3), 1–17. https://doi.org/10.1016/j.heliyon.2022.e09173
Yılmaz Tuncel, N. (2023). Stabilization of Rice Bran: A Review. Foods, 12(9), 1–21. https://doi.org/10.3390/foods12091924
Author Biographies
Insun Sangadji, Pattimura University
Christian W. Patty, Pattimura University
Jojor Desi Sitorus, Pattimura University
Nicodemus Gidion Kilmanun, Pattimura University
License
Copyright (c) 2023 Insun Sangadji, Christian W. Patty, Jojor Desi Sitorus, Nicodemus Gidion Kilmanun

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).