Vol. 9 No. 10 (2023): October
Open Access
Peer Reviewed

Utilization of Deep Learning for Mapping Land Use Change Base on Geographic Information System: A Case Study of Liquefaction

Authors

Ajun Purwanto , Paiman

DOI:

10.29303/jppipa.v9i10.5032

Published:

2023-10-25

Downloads

Abstract

This study aims to extract buildings and roads and determine the extent of changes before and after the liquefaction disaster. The research method used is automatic extraction. The data used are Google Earth images for 2017 and 2018. The data analysis technique uses the Deep Learning Geography Information System. The results showed that the extraction results of the built-up area were 23.61 ha and the undeveloped area was 147.53 ha. The total length of the road before the liquefaction disaster occurred was 35.50 km. The extraction result after the liquefaction disaster was that the area built up was 1.20 ha, while the buildings lost due to the disaster were 22.41 ha. The total road length prior to the liquefaction disaster was 35.50 km, only 11.20 km of roads were lost, 24.30 km. Deep Learning in Geographic Information Systems (GIS) is proliferating and has many advantages in all aspects of life, including technology, geography, health, education, social life, and disasters.

Keywords:

Deep learning Geographic information system Land use change Liquefaction

References

Audebert, N., Le Saux, B., & Lefèvre, S. (2017). Segment-Before-Detect: Vehicle Detection and Classification through Semantic Segmentation of Aerial Images. Remote Sensing, 9(4), 368. https://doi.org/10.3390/rs9040368

Bengio, Y., & LeCun, Y. (2007). Scaling Learning Algorithms towards AI. Large-Scale Kernel Machines, 34(5), 1–41. https://doi.org/10.7551/mitpress/7496.003.0016

Cao, R., Zhu, J., Tu, W., Li, Q., Cao, J., Liu, B., Zhang, Q., & Qiu, G. (2018). Integrating Aerial and Street View Images for Urban Land Use Classification. Remote Sensing, 10(10), 1553. https://doi.org/10.3390/rs10101553

Cheng, G., & Han, J. (2016). A Survey on Object Detection in Optical Remote Sensing Images. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 11–28. https://doi.org/10.1016/j.isprsjprs.2016.03.014

Deng, L., & Yu, D. (2014). Foundations and Trends in Signal Processing: DEEP LEARNING–Methods and Applications. https://doi.org/10.1561/2000000039

Francini, M., Salvo, C., Viscomi, A., & Vitale, A. (2022). A Deep Learning-Based Method for the Semi-Automatic Identification of Built-Up Areas within Risk Zones Using Aerial Imagery and Multi-Source GIS Data: An Application for Landslide Risk. Remote Sensing, 14(17), 4279. https://doi.org/10.3390/rs14174279

Gao, L., Song, W., Dai, J., & Chen, Y. (2019). Road Extraction from High-Resolution Remote Sensing Imagery Using Refined Deep Residual Convolutional Neural Network. Remote Sensing, 11(5), 552. https://doi.org/10.3390/rs11050552

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Cambridge, Massachusetts: MIT Press.

Gupta, A., Watson, S., & Yin, H. (2021). Deep Learning-Based Aerial Image Segmentation with Open Data for Disaster Impact Assessment. Neurocomputing, 439, 22–33. https://doi.org/10.1016/j.neucom.2020.02.139

Hong, Y., & Kim, J-W. (2018). Art Painting Detection and Identification Based on Deep Learning and Image Local Features. Multimedia Tools and Applications, 78(4), 6513-6528. https://doi.org/10.1007/s11042-018-6387-5

Iskandar, B., & Hanafi, N. (2022). Algoritma Machine Learning Deteksi Deforestasi Hutan Hujan Tropis di Kabupaten Kotawaringin Barat. Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA), 4(2), 194–201. https://doi.org/10.29303/jtika.v4i2.205

Ivanovsky, L., Khryashchev, V., Pavlov, V., & Ostrovskaya, A. (2019). Building Detection on Aerial Images Using U-NET Neural Networks. 2019 24th Conference of Open Innovations Association (FRUCT), 116–122. https://doi.org/10.23919/FRUCT.2019.8711930

Joyce, K. E., Belliss, S. E., Samsonov, S. V., McNeill, S. J., & Glassey, P. J. (2009). A Review of the Status of Satellite Remote Sensing and Image Processing Techniques for Mapping Natural Hazards and Disasters. Progress in Physical Geography, 33(2), 183–207. https://doi.org/10.1177/0309133309339563

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

Li, W., He, C., Fang, J., & Fu, H. (2018). Semantic Segmentation Based Building Extraction Method Using Multi-Source Gis Map Datasets and Satellite Imagery. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 238–241. https://doi.org/10.1109/CVPRW.2018.00043

Li, W., He, C., Fang, J., Zheng, J., Fu, H., & Yu, L. (2019). Semantic Segmentation-Based Building Footprint Extraction Using Very High-Resolution Satellite Images and Multi-Source GIS Data. Remote Sensing, 11(4), 403. https://doi.org/10.3390/rs11040403

Linardos, V., Drakaki, M., Tzionas, P., & Karnavas, Y. L. (2022). Machine Learning in Disaster Management: Recent Developments in Methods and Applications. Machine Learning and Knowledge Extraction, 4(2), 446–473. https://doi.org/10.3390/make4020020

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965

Matin, S. S., & Pradhan, B. (2021). Earthquake-Induced Building-Damage Mapping Using Explainable AI (XAI). Sensors, 21(13), 4489. https://doi.org/10.3390/s21134489

Meileni, H., Jannah, M., & Novianti, L. (2022). Penerapan Deep Learning dalam Sistem Informasi Geografis. EL Sains: Jurnal Elektro, 4(1), 19-22. https://doi.org/10.30996/elsains.v4i1.6778

Nurhikmat, T. (2018). Implementasi Deep Learning untuk Image Classification Menggunakan Algoritma Convolutional Neural Network (CNN) pada Citra Wayang Golek (Thesis). Universitas Islam Indonesia. https://doi.org/10.13140/RG.2.2.10880.53768

Purwanto, A., Rustam, R., Andrasmoro, D., & Eviliyanto, E. (2022). Flood Risk Mapping Using GIS and Multi-Criteria Analysis at Nanga Pinoh West Kalimantan Area. Indonesian Journal of Geography, 54(3). https://doi.org/10.22146/ijg.69879

Putra, J. W. G. (2019). Pengenalan Konsep Pembelajaran Mesin dan Deep Learning. Tokyo, Jepang.

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104. https://doi.org/10.1016/j.isprsjprs.2011.11.002

Sankaranarayanan, S., Prabhakar, M., Satish, S., Jain, P., Ramprasad, A., & Krishnan, A. (2020). Flood Prediction Based on Weather Parameters Using Deep Learning. Journal of Water and Climate Change, 11(4), 1766–1783. https://doi.org/10.2166/wcc.2019.321

Sun, W., Bocchini, P., & Davison, B. D. (2020). Applications of Artificial Intelligence for Disaster Management. Natural Hazards, 103(3), 2631–2689. https://doi.org/10.1007/s11069-020-04124-3

Syarifuddin, R., Dantje, R., & Chairunnisa, R. (2016). Analisa Tata Guna Lahan Berbasis Gis Menggunakan Citra Landsat 8 Dikabupaten Enrekang (Thesis). Teknik Sipil, Univeristas Hasanuddin.

Tsai, Y. H., Stow, D., Chen, H. L., Lewison, R., An, L., & Shi, L. (2018). Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve Using Google Earth Engine. Remote Sensing, 10(6), 927. https://doi.org/10.3390/rs10060927

Yuan, C., & Moayedi, H. (2020). Evaluation and Comparison of the Advanced Metaheuristic and Conventional Machine Learning Methods for the Prediction of Landslide Occurrence. Engineering with Computers, 36(4), 1801–1811. https://doi.org/10.1007/s00366-019-00798-x

Ziaei, Z., Pradhan, B., & Mansor, S. Bin. (2014). A Rule-Based Parameter Aided with Object-Based Classification Approach for Extraction of Building and Roads from WorldView-2 Images. Geocarto International, 29(5), 554–569. https://doi.org/10.1080/10106049.2013.819039

Author Biographies

Ajun Purwanto, Department of Geography Education, IKIP PGRI Pontianak, Pontianak, Indonesia

Author Origin : Indonesia

Paiman, Department of Geography Education, IKIP PGRI Pontianak, Pontianak, Indonesia

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Purwanto, A., & Paiman. (2023). Utilization of Deep Learning for Mapping Land Use Change Base on Geographic Information System: A Case Study of Liquefaction. Jurnal Penelitian Pendidikan IPA, 9(10), 8059–8064. https://doi.org/10.29303/jppipa.v9i10.5032