Vol. 10 No. 4 (2024): April
Open Access
Peer Reviewed

Development of Multiple Representation-based Electronic Teaching Materials Using Guided Inquiry on Acid-Base Topic

Authors

DOI:

10.29303/jppipa.v10i4.5118

Published:

2024-04-25

Downloads

Abstract

This study aims to develop and determine the feasibility of multiple representation-based electronic teaching materials using a guided inquiry model on the topic of acid and base for class XI high school. The method used in this research is research and development (R & D) which was developed by Thiagarajan and known as the 4D model. The 4D model consists of four stages: define, design, develop, and disseminate. This research instrument is a questionnaire to obtain a quantitative score used to determine the feasibility of teaching materials. The study results indicate that the developed teaching materials have a very good feasibility percentage. The developed teaching materials have been corrected by expert lecturers and revised according to the input given so that a decision is obtained that the teaching materials can be used. The feasibility of teaching materials is determined based on the assessment of the chemistry teacher as a reviewer and student responses. The assessment category obtained from the review by the chemistry teacher are very good with an average assessment percentage of 86.75%. Based on the results of field trials, the student responses show that the developed teaching materials were classified as very good category with an average percentage of 83.00%. Therefore, based on the validation and field trial results, the developed electronic teaching materials are feasible for use in class XI chemistry learning on the acid-base topic.

Keywords:

Acid-base topic Electronic teaching materials Guided inquiry Multiple representation

References

Andriani, S., Sukarmin, & Masykuri, M. (2021). Development of electronic modules (e-modules) based on guided inquiry on temperature and heat materials to improve students’ science literacy. Jurnal Penelitian Pendidikan IPA, 7, 281–287. https://doi.org/10.29303/jppipa.v7iSpecialIssue.1234

Arini, D., & Kustijono, R. (2017). The development of interactive electronic book (budin) using flip pdf professional to train higher order thinking skills. Jurnal Inovasi Pendidikan Fisika, 6(3), 312-318. https://doi.org/10.26740/ipf.v6n3.p%25p

Aulia, E. V. (2019). Improving science science literacy skills for high school students through guided inquiry- based learning. Advances in Computer Science Research, 95, 151-155. https://doi.org/10.2991/miseic-19.2019.36

Becker, N., Stanford, C., Towns, M., & Cole, R. (2015). Translating across macroscopic, submicroscopic, and symbolic levels: the role of instructor facilitation in an inquiry-oriented physical chemistry class. Chemistry Education Research and Practice, 16(4), 769-785. https://doi.org/10.1039/C5RP00064E

Becker, S., Klein, P., Gößling, A., & Kuhn, J. (2020). Using mobile devices to enhance inquiry-based learning processes. Learning and Instruction, 69, 1-14. https://doi.org/10.1016/j.learninstruc.2020.101350

Bunterm, T., Lee, K., Kong, J. N. L., Srikoon, S., Vangpoomyai, P., Rattanavongsa, J., & Rachahoon, G. (2014). Do different levels of inquiry lead to different learning outcomes? a comparison between guided and structured inquiry. International Journal of Science Education, 36(12), 1937-1959. https://doi.org/10.1080/09500693.2014.886347

Cooper, M. M., Kouyoumdjian, H., & Underwood, S. M. (2016). Investigating students’ reasoning about acid-base reaction. Journal of Chemical Education, 93(10), 1703-1712. https://doi.org/10.1021/acs.jchemed.6b00417

Dani, R., Murniati, M., & Evendi, E. (2021). Application of the guided inquiry model to improve student's motivation and creativity. Jurnal Penelitian Pendidikan IPA, 7(4), 642-650. https://doi.org/10.29303/jppipa.v7i4.783

Duran, M., & Dökme, İ. (2016). The effect of the inquiry-based learning approach on student’s critical-thinking skills. Eurasia Journal of Mathematics, Science & Technology Education, 12(12), 2887-2908. https://doi.org/10.12973/eurasia.2016.02311a

Fadhilla, A., Muhibbuddin, M., & Syukri, M. (2021). Application of the guided inquiry model to improve science process skills high school students. Jurnal Penelitian Pendidikan IPA, 7(4), 612-616. https://doi.org/10.29303/jppipa.v7i4.779

Faizah, S., Miswadi, S., & Haryani, S. (2013). Pengembangan perangkat pembelajaran berbasis masalah untuk meningkatkan softskill dan pemahaman konsep. Jurnal Pendidikan IPA Indonesia, 2(2), 120-128. https://doi.org/10.15294/jpii.v2i2.2712

Gazali, F., E. Yusmaita, N. R., & Ningsih. (2019). Pengembangan modul kimia berbasis REACT untuk meningkatkan keterampilan berpikir kritis siswa kelas XI IPA SMA/MA. Jurnal Eksakta Pendidikan (JEP), 3(2), 142-151. https://doi.org/10.24036/jep/vol3-iss2/385

Gkitzia, V., Salta, K., & Tzougraki, C. (2020). Students’ competence in translating between different types of chemical representations. Chemistry Education Research and Practice, 21(1), 307-330. https://doi.org/10.1039/C8RP00301G

Graulich, N. (2015). The tip of the iceberg in organic chemistry classes: how do students deal with the invisible? Chemistry Education Research and Practice, 16(1), 9-21. https://doi.org/10.1039/C4RP00165F

Habellia, R. C., & Suyanta. (2019). The effectiveness of inquiry-based science web-module on the students’ thinking skills and positive attitudes towards science. Scientiae Educatia: Jurnal Pendidikan Sains, 8(1), 23-35. https://doi.org/10.24235/sc.educatia.v8i1.4099

Hastuti, I. D., Surahmat, Sutarto, & Dafik. (2020). The effect of guided inquiry learning in improving metacognitive skill of elementary school students. International Journal of Instruction, 13(4), 315-330. https://doi.org/10.29333/iji.2020.13420a

Hwang, W. Y., & Purba, S. W. D. (2021). Effects of ubiquitous-physics app on students’ inquiry behaviors and learning achievements. Asia-Pacific Edu Res, 1-12. https://doi.org/10.1007/s40299-021-00585-7

Joyce, B., Weil, M., & Calhoun, E. (2016). Models of Teaching. Yogyakarta: Pustaka Pelajar.

Keiner, L., & Graulich, N. (2020). Transitions between representational levels: characterization of organic chemistry students’ mechanistic features when reasoning about laboratory work-up procedures. Chemistry Education Research and Practice, 21(1), 469-482. https://doi.org/10.1039/C9RP00241C

Kimberlin, S., & Yezierski, E. (2016). Effectiveness of inquiry-based lessons using particulate level models to develop high school students’ understanding of conceptual stoichiometry. Journal of Chemical Education, 93(6), 1002-1009. https://doi.org/10.1021/acs.jchemed.5b01010

Komikesari, H., Mutoharoh, M., Dewi, P. S., Utami, G. N., Anggraini, W., & Himmah, E. F. (2020). Development of e-module using flip pdf professional on temperature and heat material. Journal of Physics: Conference Series, 1572, 1-10. https://doi.org/10.1088/1742-6596/1572/1/012017

Kuhlthau, C. C., Maniotes, L. K., & Caspari, A. K. (2007). Guided Inquiry: Learning in the 21st century. Westport, Connecticut. London: Libraries Unlimited.

Li, W. S. S. & Arshad, M. Y. (2014). Application of multiple representation levels in redox reactions among tenth grade chemistry teachers. Journal of Turkish Science Education, 11(3), 35-52. Retrieved from https://tused.org/index.php/tused/article/view/605

Li, W. S. S., & Arshad, M. Y. (2015). Inquiry practices in malaysian secondary classroom and model of inquiry teaching based on verbal interaction. Malaysian Journal of Learning and Instruction, 12, 151-175. https://doi.org/10.32890/mjli2015.12.8

Liana, D. E., Muzzazinah, M., & Indrowati, M. (2022). Development of guided inquiry-based science e-modules to improve students’ critical thinking ability. Jurnal Penelitian Pendidikan IPA, 8(3), 1368–1375. https://doi.org/10.29303/jppipa.v8i3.1668

Mamun, M. A. A., Lawrie, G., & Wright, T. (2020). Instructional design of scaffolded online learning modules for self-directed and inquiry-based learning environments. Computers & Education, 144, 1-17. https://doi.org/10.1016/j.compedu.2019.103695

Margunayasa, I. G. N., Dantes, A. A. I. N., Marhaeni, & Suastra, I. W. (2019). The effect of guided inquiry learning and cognitive style on science learning achievement. International Journal of Instruction, 12(1), 737-750. https://doi.org/10.29333/iji.2019.12147a

Más, C. F., Calatayud, M. L., & Bárcenas, S. L. (2007). Surveying students’ conceptual and procedural knowledge of acid–base behavior of substances. Journal of Chemical Education, 84(10), 1717-1724. https://doi.org/10.1021/ed084p1717

Meutia, F., Nurdin, N., & Winarni, S. (2021). Development of e-student worksheets based on multiple representations of factors affecting reaction rates. Jurnal Penelitian Pendidikan IPA, 7(2), 129-136. https://doi.org/10.29303/jppipa.v7i2.533

Nasrudin, N., Agustina, I., Akrim, A., Ahmar, A. S., & Rahim, R. (2018). Multimedia educational game approach for psychological conditional. International Journal of Engineering & Technology, 7(2.9), 78-81. http://dx.doi.org/10.14419/ijet.v7i2.9.13353

Ningrum, L. S. N., Drastisianti, A., Setiowati, H., & Pratiwi, R. (2022). The effectiveness of cognitive conflict-based chemistry learning in reducing students’ misconceptions of acid-base materials. Jurnal Penelitian Pendidikan IPA, 8(4), 2131-2135. https://doi.org/10.29303/jppipa.v8i4.2092

Noer, A. M., Putri, E. N., Rery, R. U., Anwar, L., & Tarawi, O. (2021). The e-module development of reaction rate based on guided inquiry as independent teaching materials. Journal of Physics: Conference Series, 1806, 1-7. https://doi.org/10.1088/1742-6596/1806/1/012176

Nursaputri, L., Haryanto, Z., & Junus, M. (2021). Content feasibility analysis of grade X senior high school physics book. ScienceEdu: Jurnal Pendidikan IPA, 4(1), 7-13. https://doi.org/10.19184/se.v4i1.23846

Perdana, F. A., Sarwanto, Sukarmin, & Sujadi, I. (2017). Development of e-module combining science process skills and dynamics motion material to increasing critical thinking skills and improve student learning motivation senior high school. International Journal of Science and Applied Science: Conference Series, 1(1), 45-54. https://doi.org/10.20961/ijsascs.v1i1.5112

Pratono, A., Sumarti, S. S., Wijayati, N. (2018). Contribution of assisted inquiry model of E-module to students science process skill. Journal of innovative science education, 7(1), 62-68. https://doi.org/10.15294/jise.v7i1.20633

Pursitasari, I. D., & Permanasari, A. (2012). Analisis pemahaman konsep dan kesulitan mahasiswa untuk pengembangan program perkuliahan dasar-dasar kimia analitik berbasis problem solving. Jurnal Pendidikan IPA Indonesia, 1(1), 98-101. https://doi.org/10.15294/jpii.v1i1.2020

Pursitasari, I. D., Suhardi, E., Putra, A. P., & Rachman, I. (2020). Enhancement of student’s critical thinking skill through science context based inquiry learning. Jurnal Pendidikan IPA Indonesia, 9(1), 97-105. https://doi.org/10.15294/jpii.v9i1.21884

Putra, M. I. S., Widodo, & Jatmiko, B. (2016). The development of guided inquiry science learning materials to improve science literacy skill of prospective MI teachers. Jurnal Pendidikan IPA Indonesia, 5(1), 83-93. https://doi.org/10.15294/jpii.v5i1.5794

Rasmawan, R. (2020). Development of multi-representation based electronic book on inter molecular forces (IMFs) concept for prospective chemistry teachers. International Journal of Instruction, 13(4), 747-762. https://doi.org/10.29333/iji.2020.13446a

Sagita, R., Azra, F., & Azhar, M. (2017). Pengembangan modul konsep mol berbasis inkuiri terstruktur dengan penekanan pada interkoneksi tiga level representasi kimia untuk kelas X SMA. Jurnal Eksakta Pendidikan, 1(2), 25-32. https://doi.org/10.24036/jep.v1i2.48

Sanchez, J. M. P. (2021). Understanding of Kinetic Molecular Theory of Gases in Three Modes of Representation among Tenth-Grade Students in Chemistry. International Journal of Learning, Teaching, and Educational Research, 20(1), 48–63. https://doi.org/10.26803/ijlter.20.1.3

Santos, V. C., & Arroio, A. (2016). The representational levels: influences and contributions to research in chemical education. Journal of Turkish Science Education, 13(1), 3-18. https://doi.org/10.12973/tused.10153a)

Sriwahyuni, I., Risdianto, E., & Johan, H. (2019). Pengembangan bahan ajar elektronik menggunakan flip pdf professional pada materi alat-alat optik di SMA. Jurnal Kumparan Fisika, 2(3), 145-152. https://doi.org/10.33369/jkf.2.3.145-152

Sudarsana, W., Sarwanto, S., & Marzuki, A. (2021). Development of discovery learning-based e-modules using pdf flip professional software integrated with the website as an alternative to learning physics during the covid 19 pandemic. Jurnal Penelitian Pendidikan IPA, 7(4), 519-524. https://doi.org/10.29303/jppipa.v7i4.786

Sumiyarti, L., Setiadi, D., & Jamaluddin. (2019). The Development of learning devices based on guided inquiry and affectivities for students’ critical thinking skills. Jurnal Penelitian Pendidikan IPA, 5(2), 194-198. https://doi.org/10.29303/jppipa.v5i2.275

Sunyono, S., & Meristin, A. (2018). The effect of multiple representation-based learning (MRL) to increase students’ understanding of chemical bonding concepts. Jurnal Pendidikan IPA Indonesia, 7(4), 399-406. https://doi.org/10.15294/jpii.v7i4.16219

Thiagarajan, S., Semmel, D. S., & Semmel, M. I. (1974). Instructional development for training teachers of exceptional children. Center for Innovation in Teaching the Handicapped, Indiana University.

Vlassi, M., & Karaliota, A. (2013). The comparison between guided inquiry and traditional teaching method: A case study for teaching of the structure of matter to 8th grade Greek students. Procedia-Social and Behavioral Sciences, 93, 494-497. https://doi.org/10.1016/j.sbspro.2013.09.226

Werdiningsih, T., Triyono, M. B., & Majid, N. W. A. (2019). Interactive Multimedia Learning based on Mobile Learning for Computer Assembling Subject using the Principle of Multimedia Learning (Mayer). International Journal of Advanced Science and Technology, 28(16), 711 – 719. Retrieved from http://sersc.org/journals/index.php/IJAST/article/view/1944

Wulandari, C., Susilaningsih, E., & Kasmui. (2018). Estimasi validitas dan respon siswa terhadap bahan ajar multi representasi: definitif, makroskopis, mikroskopis, simbolik pada materi asam basa. Jurnal Phenomenon, 8(2), 165-174. https://doi.org/10.21580/phen.2018.8.2.2498

Yani, Y. P., Hardeli, H., Oktavia, B., & Kurniawati, D. (2022). The development of an integrated e-module of scientific literacy and video demonstration using a problem-based learning model for high school students on acids and bases. Jurnal Penelitian Pendidikan IPA, 8(2), 452–462. https://doi.org/10.29303/jppipa.v8i2.1306

Ye, J., Lu, S., & Bi, H. (2019). The effects of microcomputer-based laboratories on students macro, micro, and symbolic representations when learning about net ionic reactions. Chemistry Education Research and Practice, 20(1), 288–301. https://doi.org/10.1039/c8rp00165k

Yulianti, E., & Zhafirah, N. (2020). Analisis komprehensif pada implementasi pembelajaran dengan model inkuiri terbimbing: aspek penalaran ilmiah. Jurnal Penelitian Pendidikan IPA, 6(1), 125-130. https://doi.org/10.29303/jppipa.v6i1.341

Zuhroti, B., Marfu’ah, S., & Ibnu, M. S. (2018). Identifikasi pemahaman konsep tingkat representasi makroskopik, mikroskopik, dan simbolik siswa pada materi asam-basa. Jurnal Pembelajaran Kimia, 3(2), 44-49. http://dx.doi.org/10.17977/um026v3i22018p044

Author Biographies

Isni Nurani, Universitas Negeri Yogyakarta

Author Origin : Indonesia

Suyanta, Universitas Negeri Yogyakarta

Author Origin : Indonesia

Department of Chemistry Education, Universitas Negeri Yogyakarta, Indonesia.

Downloads

Download data is not yet available.

How to Cite

Nurani, I., & Suyanta. (2024). Development of Multiple Representation-based Electronic Teaching Materials Using Guided Inquiry on Acid-Base Topic. Jurnal Penelitian Pendidikan IPA, 10(4), 1674–1683. https://doi.org/10.29303/jppipa.v10i4.5118