Design of 3×3 Multi Input Multi Output (MIMO) Decoupling on Coupled Tank System with PID Controller

Authors

Zahrotul Azizah , Listin Fitrianah

DOI:

10.29303/jppipa.v9i10.5167

Published:

2023-10-25

Issue:

Vol. 9 No. 10 (2023): October

Keywords:

Coupled tank system, Decoupling, Interaction, MIMO 3×3, Multivariable

Research Articles

Downloads

How to Cite

Azizah, Z., & Fitrianah, L. . (2023). Design of 3×3 Multi Input Multi Output (MIMO) Decoupling on Coupled Tank System with PID Controller. Jurnal Penelitian Pendidikan IPA, 9(10), 8314–8320. https://doi.org/10.29303/jppipa.v9i10.5167

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Multivariable processes are the general classification for process features in the chemical industry. The variables in a single process unit interact with one another through more than one input and output. Since parameters interact with one another, changing one parameter's variable requires changing another parameter's variable as well. Further research is needed to determine how to create controllers that can handle interactions in the process. A MIMO control system is exemplified by the coupled tank system. Coupled tanks are present, and they communicate with one another by horizontal pipes. An interacting system can be represented using a coupled tank setup. Decoupling can be added to reduce the interactions that take place between variables. According to the results of the simulation, adding decoupling reduces the IAE value compared to not adding it. When the setpoint for tank level 1 (H1) was changed, the system's IAE value was 17.35 without the addition of decoupling, whereas it was 11.71 with it.

References

Azizah, Z. (2018). Decoupling IMC Controller untuk Sistem MIMO (Case Study Pengendalian De-isobutanizer Dual Condenser). Retrieved fromhttps://repository.its.ac.id/53906/

Azizah, Z. (2022). Desain Invers Decoupling Pada Sistem Mimo 3×3 Dengan Pengendali PID. Jurnal Chemurgy, 6(1), 45-51. http://dx.doi.org/10.30872/cmg.v6i1.7477

Azizah, Z., Sutikno, J. P., Handogo, R., & Hikmadiyar, R. A. (2020). Inverted decoupling MIMO internal model control using Mp tuning. IOP Conference Series: Materials Science and Engineering, 736(2). https://doi.org/10.1088/1757-899X/736/2/022101

Bharathi, M., & Selvakumar, C. (2012). Interaction reducer for closed-loop control of multivariable systems. International Journal of Engineering Trends and Technology, 4(4), 1–15. Retrieved from http://www.ijettjournal.org

Darajat, A. U., & Istiqphara, S. (2021). Sistem Kontrol Ketinggian Air pada Sistem Dua Tanki dengan Menggunakan Metode Proporsional Integral (PI) Adaptif. JTEV (Jurnal Teknik Elektro Dan Vokasional), 7(1), 37. https://doi.org/10.24036/jtev.v7i1.111893

Echsony, M. E., Wahyudi, N., & Hidayatullah, N. A. (2018). Setting Liquid Level Coupled Tank Using Fuzzy Adaptive Control. JEEMECS (Journal of Electrical Engineering, Mechatronic and Computer Science), 1(2), 37–41. https://doi.org/10.26905/jeemecs.v1i2.2423

Fellani, M. A., & Gabaj, A. M. (2015). PID controller design for two tanks liquid level control system using Matlab. International Journal of Electrical and Computer Engineering, 5(3), 436–442. https://doi.org/10.11591/ijece.v5i3.pp436-442

Garrido, J., Vázquez, F., & Morilla, F. (2014). Inverted decoupling internal model control for square stable multivariable time delay systems. Journal of Process Control, 24(11), 1710–1719. https://doi.org/10.1016/j.jprocont.2014.09.003

Huang, H., & Lin, F. (2006). Decoupling Multivariable Control with Two Degrees of Freedom Decoupling Multivariable Control with Two Degrees of Freedom. Society, 45(9), 3161–3173. https://doi.org/10.1021/ie051138z

Jin, Q. B., & Liu, Q. (2014). Decoupling proportional-integral-derivative controller design for multivariable processes with time delays. Industrial and Engineering Chemistry Research, 53(2), 765–777. https://doi.org/10.1021/ie4024726

Jin, Q., Du, X., Wang, Q., & Liu, L. (2016). Analytical design 2 DOF IMC control based on inverted decoupling for non-square systems with time delay. Canadian Journal of Chemical Engineering, 94(7), 1354–1367. https://doi.org/10.1002/cjce.2250

Mahapatro, S. R. (2018). Control Algorithms for a Two Tank Liquid Level System : An Experimental Study Department of Electrical Engineering Control Algorithms for a Two Tank Liquid Level System : An Experimental Study.

Morari, M., & Zafiriou, E. (1982). Robust Process Control. Englewood Cliffs, New Jersey.

Muntaser, A., & Buaossa, N. (2017). Coupled Tank Non-linear System; Modeling and Level Control using PID and Fuzzy Logic Techniques.

Ogata, K., & Brewer, J. W. (2010). Modern Control Engineering(5th Edition). Pearson New York

Pangestu, S. P., Yasa, M. B. A., Ariawan, I., Yasa, K. A., Purbhawa, I., Parti, I. K., ... & Sapteka, A. A. N. G. (2022). Perancangan Simulasi Sistem Kontrol Volume Pada Dua Tangki Air Melalui Telegram. CIRCUIT: Jurnal Ilmiah Pendidikan Teknik Elektro, 6(22), 126-134. Retrieved from https://repository.pnb.ac.id/133/1/Similarity%20Check%20-%20%C2%A0Perancangan%20Simulasi%20Sistem.pdf

Prajapati, A. K., & Roy, B. K. (2016). Multi-fault diagnosis in three coupled tank system using unknown input observer. IFAC-PapersOnLine, 49(1), 47–52. https://doi.org/10.1016/j.ifacol.2016.03.027

Puspitarini, E. D., Effendie, R., & Pramudijanto, J. (2017). Desain Pengaturan Level pada Coupled Tank Process dengan Menggunakan Metode Model Predictive Control. Jurnal Teknik ITS, 6(1). https://doi.org/10.12962/j23373539.v6i1.21345

Rahmat, M. F., & Md Rozali, S. (2012). Modeling and Controller Design for a Coupled–Tank Liquid Level System: Analysis & Comparison. Jurnal Teknologi, 48(D), 113–141. https://doi.org/10.11113/jt.v48.229

Ranjan M, S., & S, B. (2015). PI Controller Design for a Coupled Tank System Using LMI Approach: An Experimental Study. Journal of Chemical Engineering & Process Technology, 07(01), 1–8. https://doi.org/10.4172/2157-7048.1000266

Sadli, M. (2014). Disain Kontroler PI dengan Decoupling pada Sistem Kendali Level Coupled Tank. Jurnal Ecotipe (Electronic, Control, Telecommunication, Information, and Power Engineering), 1(2), 29-35. https://doi.org/10.33019/ecotipe.v1i2.49

Saputra, R., Ariyani, P. F., & Juliasari, N. (2018). Sistem Monitoring Stok Tangki Air Memanfaatkan Sensor Ultrasonik Dan Mikrokontroler Arduino Mega. Jurnal Budi Luhur Informasi Teknologi, 15(1), 1–155. http://dx.doi.org/10.36080/bit.v15i1.678

Seborg, D., Edgar, T., Mellicamp, D., & Doyle III, F. (2011). Process Dynamics and Control. John Wiley & Sons, 595. https://doi.org/10.1007/s13398-014-0173-7.2

Sim, S. Y., Kek, S. L., & Tay, K. G. (2017). Optimal control of a coupled tanks system with model-reality differences. AIP Conference Proceedings, 1872(October 2020). https://doi.org/10.1063/1.4996669

Sousa, B. S., Silva, F. V., & Fileti, A. M. F. (2020). Level Control of Coupled Tank System Based on Neural Network Techniques. Chemical Product and Process Modeling, 15(3), 1–19. https://doi.org/10.1515/cppm-2019-0086

Subiantoro, A. (2010). Pemodelan Sistem Tangki-Terhubung Dengan Menggunakan Model Fuzzy Takagi-Sugeno. MAKARA of Technology Series, 10(1). https://doi.org/10.7454/mst.v10i1.402

Sutikno, J. P., Azizah, Z., Handogo, R., Hikmadiyar, R. A., & Hisyam, A. (2019). Inverted decoupling 2DoF internal model control for MIMO processes. Chemical Engineering, 10(3). https://doi.org/10.14716/ijtech.v10i3.2922

Ulum, Z. (2017). Perancangan Kendali pada Sistem Empat Tangki Menggunakan Teknik Kendali Model Prediktif. Jurnal Riset Dan Aplikasi Matematika (JRAM), 1(1), 1. https://doi.org/10.26740/jram.v1n1.p1-7

Üstüner, M. A., & Taşkin, S. (2019). Inverted Decoupling PID Controller Design for a MIMO System. Gigma J Eng & Nat Sci, 4(2), 1139–1151. Retrieved from https://dergipark.org.tr/en/pub/sigma/issue/65442/1010432

Vijula, D. A., & Devarajan, N. (2014). Decentralized Pi Controller Design For Non Linear Multivariable Systems Based On Ideal Decoupler. Journal of Theoretical & Applied Information Technology, 64(2). Retrieved from https://www.jatit.org/volumes/Vol64No2/33Vol64No2.pdf

Author Biographies

Zahrotul Azizah, Universitas Nahdlatul Ulama Sidoarjo

Listin Fitrianah, Universitas Nahdlatul Ulama Sidoarjo

License

Copyright (c) 2023 Zahrotul Azizah, Listin Fitrianah

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).