The Effect of Concentration Transition Metal Oxide CuO as Activated Carbon-Based Supercapacitor

Authors

Maryati Doloksaribu , Erniwati Halawa , Mukti Hamjah Harahap

DOI:

10.29303/jppipa.v10i4.5738

Published:

2024-04-25

Issue:

Vol. 10 No. 4 (2024): April

Keywords:

CuO, Nanoparticle, Nanoporous, Supercapacitor, Surface area

Research Articles

Downloads

How to Cite

Doloksaribu, M., Halawa, E., & Harahap, M. H. (2024). The Effect of Concentration Transition Metal Oxide CuO as Activated Carbon-Based Supercapacitor. Jurnal Penelitian Pendidikan IPA, 10(4), 1698–1706. https://doi.org/10.29303/jppipa.v10i4.5738

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Supercapacitors are promising energy storage devices in future energy technology. In this research, the primary and applied aspects of supercapacitors are developed. Various techniques have been developed specifically to estimate specific capacitances. Various attempts have been made in the literature to increase the specific capacitance value of the electrode materials. Electrode materials with unique structural and electrochemical properties, such as high capacity and cyclic stability, exhibit good supercapacitor performance. Many new electrode materials have been developed to play an essential role in capacitance behavior. This research focuses on the highly efficient application of nanostructured electrode materials such as nanoporous carbon and metal oxide CuO for supercapacitors. Nanopore carbon is made from coconut shell, which is synthesized using a simple heating method. Next, carbon nanopore and CuO nanoparticle composites were carried out with composition variations of 0.5,10,15, and 20% of the total weight. The results of cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge tests, maximum results were obtained on a composition of 5% CuO nanoparticles with a capacitance of 280 F/gr and a conductivity of 1.14 X 10-2 S/cm. This result is due to an increase in the surface area between the pore surfaces, so more ions are trapped, causing the filling process to take place quickly.

References

Ajina, A., & Isa, D. (2010). Symmetrical Supercapacitor Using Coconut Shell-Based Activated Carbon. Pertanika Journal of Science and Technology, 18(2), 351–363. Retrieved from https://rb.gy/kv6jd1

Akinwolemiwa, B., Peng, C., & Chen, G. Z. (2015). Redox Electrolytes in Supercapacitors. Journal of The Electrochemical Society, 162(5), A5054–A5059. https://doi.org/10.1149/2.0111505jes

Barranco, V., Lillo-Rodenas, M. A., Linares-Solano, A., Oya, A., Pico, F., Ibañez, J., Agullo-Rueda, F., Amarilla, J. M., & Rojo, J. M. (2010). Amorphous Carbon Nanofibers and Their Activated Carbon Nanofibers as Supercapacitor Electrodes. The Journal of Physical Chemistry C, 114(22), 10302–10307. https://doi.org/10.1021/jp1021278

Beguin, F. (2009). Electrical Double-Layer Capacitors and Pseudocapacitors From Carbons for Electrochemical Energy Storage and Conversion Systems. CRC Press.

Bose, S., Kuila, T., Mishra, A. K., Rajasekar, R., Kim, N. H., & Lee, J. H. (2012). Carbon-based nanostructured materials and their composites as supercapacitor electrodes. Journal of Materials Chemistry, 22(3), 767–784. https://doi.org/10.1039/c1jm14468e

Burke, A., Liu, Z., & Zhao, H. (2014). Present and future applications of supercapacitors in electric and hybrid vehicles. 2014 IEEE International Electric Vehicle Conference, IEVC 2014. https://doi.org/10.1109/IEVC.2014.7056094

Candelaria, S. L., Garcia, B. B., Liu, D., & Cao, G. (2012). Nitrogen modification of highly porous carbon for improved supercapacitor performance. Journal of Materials Chemistry, 22(19), 9884. https://doi.org/10.1039/c2jm30923h

Enock, T. K., King’ondu, C. K., Pogrebnoi, A., & Jande, Y. A. C. (2017). Status of Biomass Derived Carbon Materials for Supercapacitor Application. International Journal of Electrochemistry, 2017, 1–14. https://doi.org/10.1155/2017/6453420

Etape, E. P., John Ngolui, L., Foba-Tendo, J., Yufanyi, D. M., & Victorine Namondo, B. (2017). Synthesis and Characterization of CuO, TiO 2 , and CuO-TiO 2 Mixed Oxide by a Modified Oxalate Route. Journal of Applied Chemistry, 2017, 1–10. https://doi.org/10.1155/2017/4518654

Faraji, S., & Ani, F. N. (2014). Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors – A review. Journal of Power Sources, 263, 338–360. https://doi.org/10.1016/j.jpowsour.2014.03.144

Fernández, J. A., Arulepp, M., Leis, J., Stoeckli, F., & Centeno, T. A. (2008). EDLC performance of carbide-derived carbons in aprotic and acidic electrolytes. Electrochimica Acta, 53(24), 7111–7116. https://doi.org/10.1016/j.electacta.2008.05.028

Fey, G. T. K., Lee, D. C., Lin, Y. Y., & Prem Kumar, T. (2003). High-capacity disordered carbons derived from peanut shells as lithium-intercalating anode materials. Synthetic Metals, 139(1), 71–80. https://doi.org/10.1016/S0379-6779(03)00082-1

Frackowiak, E., Abbas, Q., & Béguin, F. (2013). Carbon/carbon supercapacitors. Journal of Energy Chemistry, 22(2), 226–240. https://doi.org/10.1016/S2095-4956(13)60028-5

Frackowiak, E., & Béguin, F. (2001). Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39(6), 937–950. https://doi.org/10.1016/S0008-6223(00)00183-4

Fuertes, A. B., Ferrero, G. A., & Sevilla, M. (2014). One-pot synthesis of microporous carbons highly enriched in nitrogen and their electrochemical performance. J. Mater. Chem. A, 2(35), 14439–14448. https://doi.org/10.1039/C4TA02959C

Hwang, Y. J., Jeong, S. K., Shin, J. S., Nahm, K. S., & Stephan, A. M. (2008). High capacity disordered carbons obtained from coconut shells as anode materials for lithium batteries. Journal of Alloys and Compounds, 448(1-2), 141–147. https://doi.org/10.1016/j.jallcom.2006.10.036

Jain, A., Aravindan, V., Jayaraman, S., Kumar, P. S., Balasubramanian, R., Ramakrishna, S., Madhavi, S., & Srinivasan, M. P. (2013). Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors. Scientific Reports, 3(1), 3002. https://doi.org/10.1038/srep03002

Kierzek, K., Frackowiak, E., Lota, G., Gryglewicz, G., & Machnikowski, J. (2004). Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochimica Acta, 49(4), 515–523. https://doi.org/10.1016/j.electacta.2003.08.026

Largeot, C., Portet, C., Chmiola, J., Taberna, P.-L., Gogotsi, Y., & Simon, P. (2008). Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society, 130(9), 2730–2731. https://doi.org/10.1021/ja7106178

Lee, G.-J., & Pyun, S.-I. (2007). Synthesis and Characterization of Nanoporous Carbon and its Electrochemical Application to Electrode Material for Supercapacitors. Springer: Modern Aspects of Electrochemistry. https://doi.org/10.1007/978-0-387-46108-3_2

Lee, H., Cho, M. S., Kim, I. H., Nam, J. Do, & Lee, Y. (2010). RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors. Synthetic Metals, 160(9-10), 1055–1059. https://doi.org/10.1016/j.synthmet.2010.02.026

Li, B., Gao, G., Zhai, D., Wei, C., He, Y., Du, H., & Kang, F. (2013). Synthesis, characterization and electrochemical performance of manganese dioxide in a quaternary microemulsion: The role of the co-surfactant and water. International Journal of Electrochemical Science, 8(6), 8740–8751. https://doi.org/10.1016/s1452-3981(23)12924-5

Lozano-Castelló, D., Alcañiz-Monge, J., de la Casa-Lillo, M. ., Cazorla-Amorós, D., & Linares-Solano, A. (2002). Advances in the study of methane storage in porous carbonaceous materials. Fuel, 81(14), 1777–1803. https://doi.org/10.1016/S0016-2361(02)00124-2

Lu, W., Hartman, R., Qu, L., & Dai, L. (2011). Nanocomposite electrodes for high-performance supercapacitors. Journal of Physical Chemistry Letters, 2(6), 655–660. https://doi.org/10.1021/jz200104n

Musa, M. S., Sanagi, M. M., Nur, H., & Wan Ibrahim, W. A. (2015). Understanding Pore Formation and Structural Deformation in Carbon Spheres During KOH Activation. Sains Malaysiana, 44(4), 613–618. https://doi.org/10.17576/jsm-2015-4404-17

Nor, N. S. M., Deraman, M. S., Suleman, M., Jasni, M. R. M., Manjunatha, J. G., Othman, M. A. R., & Shamsudin, S. A. (2017). Supercapacitors using Binderless Activated Carbon Monoliths Electrodes consisting of a Graphite Additive and Pre-carbonized Biomass Fibers. International Journal of Electrochemical Science, 12(3), 2520–2539. https://doi.org/10.20964/2017.03.48

Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065

Park, J. H., & Park, O. O. (2002). Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. Journal of Power Sources, 111(1), 185–190. https://doi.org/10.1016/S0378-7753(02)00304-X

Qu, D., & Shi, H. (1998). Studies of activated carbons used in double-layer capacitors. Journal of Power Sources, 74(1), 99–107. https://doi.org/10.1016/S0378-7753(98)00038-X

Sing, K. S. W. (1982). Reporting physisorption data for gas/solid systems. Pure and Applied Chemistry, 54(11), 2201–2218. https://doi.org/10.1351/pac198254112201

Timperman, L., Skowron, P., Boisset, A., Galiano, H., Lemordant, D., Frackowiak, E., Béguin, F., & Anouti, M. (2012). Triethylammonium bis(tetrafluoromethylsulfonyl)amide protic ionic liquid as an electrolyte for electrical double-layer capacitors. Physical Chemistry Chemical Physics, 14(22), 8199. https://doi.org/10.1039/c2cp40315c

Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 41(2), 797–828. https://doi.org/10.1039/C1CS15060J

Wang, G.-X., Zhang, B.-L., Yu, Z.-L., & Qu, M.-Z. (2005). Manganese oxide/MWNTs composite electrodes for supercapacitors. Solid State Ionics, 176(11-12), 1169–1174. https://doi.org/10.1016/j.ssi.2005.02.005

Wang, S., Wang, R., Zhang, Y., & Zhang, L. (2017). Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors. Nanotechnology, 28(44), 445406. https://doi.org/10.1088/1361-6528/aa848a

Wang, Y., Guo, J., Wang, T., Shao, J., Wang, D., & Yang, Y.-W. (2015). Mesoporous Transition Metal Oxides for Supercapacitors. Nanomaterials, 5(4), 1667–1689. https://doi.org/10.3390/nano5041667

Wu, Z. S., Zhou, G., Yin, L. C., Ren, W., Li, F., & Cheng, H. M. (2012). Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 1(1), 107–131. https://doi.org/10.1016/j.nanoen.2011.11.001

Yang, J., Liu, Y., Chen, X., Hu, Z., & Zhao, G. (2008). Carbon Electrode Material with High Densities of Energy and Power. Acta Physico - Chimica Sinica, 24(1), 13–19. https://doi.org/10.1016/S1872-1508(08)60002-9

Zhang, J., & Zhao, X. S. (2012). On the Configuration of Supercapacitors for Maximizing Electrochemical Performance. ChemSusChem, 5(5), 818–841. https://doi.org/10.1002/cssc.201100571

Zhang, L., Candelaria, S. L., Tian, J., Li, Y., Huang, Y. X., & Cao, G. (2013). Copper nanocrystal modified activated carbon for supercapacitors with enhanced volumetric energy and power density. Journal of Power Sources, 236, 215–223. https://doi.org/10.1016/j.jpowsour.2013.02.036

Zhu, Y., Hu, H., Li, W., & Zhang, X. (2007). Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors. Carbon, 45(1), 160–165. https://doi.org/10.1016/j.carbon.2006.07.010

Zhuiykov, S. (2014). Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices. Woodhead Publishing.

Author Biographies

Maryati Doloksaribu, Universitas Negeri Medan

Erniwati Halawa, Universitas Negeri Medan

Mukti Hamjah Harahap, Universitas Negeri Medan

License

Copyright (c) 2024 Maryati Doloksaribu, Erniwati Halawa, Mukti Hamjah Harahap

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).