Computational Thinking Skills to Solve Kinematics Problems at High Cognitive Level Cases
DOI:
10.29303/jppipa.v9i12.5775Published:
2023-12-20Issue:
Vol. 9 No. 12 (2023): DecemberKeywords:
Computational Thinking, High orde thinking, Kinematics lessonResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Problems of kinematics of rectilinear motion in high-level cognitive level problems often display complexity in their solutions. This research aims to describe the use of computational thinking (CT) methods in helping students solve linear motion kinematics problems designed at a high cognitive level (analysis, evaluation, and creation). This research uses a descriptive quantitative method by using skills observation sheets and analysis of performance results as data collection instruments. The sample was 14 students from the Natural Sciences Tadris study program in introductory physics courses. This research's data analysis technique uses an interpretation of student performance results in solving linear motion kinematics questions at a high cognitive level using the performance stages of the CT method. Significant findings show that the average student cannot solve cases at a high cognitive level using CT skills. Students can only complete and pass the stages of computational thinking skills in the temporary decomposition and abstraction phases but have difficulties in the visualization and design stages at the analysis, evaluation, and creation levels.
References
Adams, W. K., & Wieman, C. E. (2015). Analyzing the many skills involved in solving complex physics problems. American Journal of Physics, 83(5), 459–467. https://doi.org/10.1119/1.4913923
Ahmad, S., Prahmana, R. C. I., Kenedi, A. K., Helsa, Y., Arianil, Y., & Zainil, M. (2018). The instruments of higher order thinking skills. Journal of Physics: Conference Series, 943(1), 12053. https://doi.org/10.1088/1742-6596/943/1/012053
Angeli, C., & Giannakos, M. (2020). Computational thinking education: Issues and challenges. In Computers in Human Behavior (Vol. 105, p. 106185). Elsevier. https://doi.org/10.1016/j.chb.2019.106185
Apriani, A., Ismarmiaty, I., Susilowati, D., Kartarina, K., & Suktiningsih, W. (2021). Penerapan Computational Thinking pada Pelajaran Matematika di Madratsah Ibtidaiyah Nurul Islam Sekarbela Mataram. ADMA : Jurnal Pengabdian Dan Pemberdayaan Masyarakat, 1(2), 47–56. https://doi.org/10.30812/adma.v1i2.1017
Argaw, A. S., Haile, B. B., Ayalew, B. T., & Kuma, S. G. (2017). The effect of problem based learning (PBL) instruction on students’ motivation and problem solving skills of physics. Eurasia Journal of Mathematics, Science and Technology Education, 13(3), 857–871. https://doi.org/10.12973/eurasia.2017.00647a
Badriev, I., & Banderov, V. (2014). Numerical method for solving variation problems in mathematical physics. In Applied Mechanics and Materials (Vols. 668–669, pp. 1094–1097). https://doi.org/10.4028/www.scientific.net/AMM.668-669.1094
Basogain, X., Olabe, M. Ã., Olabe, J. C., & Rico, M. J. (2018). Computational Thinking in pre-university Blended Learning classrooms. Computers in Human Behavior, 80, 412–419. https://doi.org/10.1016/j.chb.2017.04.058
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers and Education, 72, 145–157. https://doi.org/10.1016/j.compedu.2013.10.020
Burko, L. M. (2016). Using the Case Study Method in Teaching College Physics. The Physics Teacher, 54(7), 413–415. https://doi.org/10.1119/1.4962777
Byun, T., & Lee, G. (2014). Why students still can’t solve physics problems after solving over 2000 problems. American Journal of Physics, 82(9), 906–913. https://doi.org/10.1119/1.4881606
Cansu, F. K., & Cansu, S. K. (2019). An Overview of Computational Thinking. International Journal of Computer Science Education in Schools, 3(1), 17–30. https://doi.org/10.21585/ijcses.v3i1.53
Cheng, C., & Zhang, G. T. (2021). Deep learning method based on physics informed neural network with Resnet block for solving fluid flow problems. Water (Switzerland), 13(4). https://doi.org/10.3390/w13040423
Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020). Fostering computational thinking through educational robotics: a model for creative computational problem solving. In International Journal of STEM Education, 7(1). https://doi.org/10.1186/s40594-020-00238-z
Chiou, G. L., & Anderson, O. R. (2010). A multi-dimensional cognitive analysis of undergraduate physics students’ understanding of heat conduction. International Journal of Science Education, 32(16), 2113–2142. https://doi.org/10.1080/09500690903258246
Damayanti, N., Hartono, Subali, B., Nugroho, S. E., & Sureeporn, K. (2020). Items analysis of physics assessment based on cognitive level of high order thinking skills in bloom taxonomy. In Journal of Physics: Conference Series (Vol. 1521, Issue 2). https://doi.org/10.1088/1742-6596/1521/2/022022
De Regt, H. W. (2001). Spacetime Visualisation and the Intelligibility of Physical Theories. Studies in History and Philosophy of Science Part B - Studies in History and Philosophy of Modern Physics, 32(2), 243–265. https://doi.org/10.1016/S1355-2198(01)00007-7
Denning, P. J. (2009). The profession of IT: Beyond computational thinking. Communications of the ACM, 52(6), 28–30. https://doi.org/10.1145/1516046.1516054
Diansah, I., Suyatna, A., & Viyanti. (2021). STEM-based physics multimedia design for stimulating HOTS on water and wind energy topic: Physics teacher perception. IOP Conference Series: Earth and Environmental Science, 1796(1). https://doi.org/10.1088/1742-6596/1796/1/012002
Docktor, J. L., Strand, N. E., Mestre, J. P., & Ross, B. H. (2015). Conceptual problem solving in high school physics. Physical Review Special Topics - Physics Education Research, 11(2). https://doi.org/10.1103/PhysRevSTPER.11.020106
Gadanidis, G. (2017). Artificial intelligence, computational thinking, and mathematics education. International Journal of Information and Learning Technology, 34(2), 133–139. https://doi.org/10.1108/IJILT-09-2016-0048
Grebin, N., Grabovska, S., Karkovska, R., & Vovk, A. (2020). Applying Benjamin Bloom’s Taxonomy Ideas in Adult Learning. Journal of Education Culture and Society, 11 (1). https://doi.org/10.15503/jecs2020.1.61.72
Gretter, S., & Yadav, A. (2016). Computational Thinking and Media & Information Literacy: An Integrated Approach to Teaching Twenty-First Century Skills. TechTrends, 60(5), 510–516. https://doi.org/10.1007/s11528-016-0098-4
Gröber, S., Klein, P., & Kuhn, J. (2014). Video-based problems in introductory mechanics physics courses. European Journal of Physics, 35(5). https://doi.org/10.1088/0143-0807/35/5/055019
Hershkovitz, A., Sitman, R., Israel-Fishelson, R., EguÃluz, A., Garaizar, P., & Guenaga, M. (2019). Creativity in the acquisition of computational thinking. Interactive Learning Environments, 27(5–6), 628–644. https://doi.org/10.1080/10494820.2019.1610451
Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach computational thinking: Suggestions based on a review of the literature. Computers and Education, 126, 296–310. https://doi.org/10.1016/j.compedu.2018.07.004
Ince, E. (2018). An Overview of Problem Solving Studies in Physics Education. Journal of Education and Learning, 7(4), 191. https://doi.org/10.5539/jel.v7n4p191
JuÅ¡keviÄiene, A., & Dagiene, V. (2018). Computational thinking relationship with digital competence. Informatics in Education, 17(2), 265–284. https://doi.org/10.15388/infedu.2018.14
Kaluza, T. (2018). On the Unification Problem in Physics. International Journal of Modern Physics D, 27(14). https://doi.org/10.1142/S0218271818700017
Kanderakis, N. (2016). The Mathematics of High School Physics: Models, Symbols, Algorithmic Operations and Meaning. Science and Education, 25(7–8), 837–868. https://doi.org/10.1007/s11191-016-9851-5
Kao, G. Y. M., Chiang, C. H., & Sun, C. T. (2017). Customizing scaffolds for game-based learning in physics: Impacts on knowledge acquisition and game design creativity. Computers and Education, 113, 294–312. https://doi.org/10.1016/j.compedu.2017.05.022
Kirana, I. E., & Kusairi, S. (2019). Profil Kemampuan Berpikir Kritis Mahasiswa Program Studi Pendidikan IPA dalam Kasus Grafik Kinematika Satu Dimensi. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 4(3), 363. https://doi.org/10.17977/jptpp.v4i3.12113
Koh, K. H., Basawapatna, A., Nickerson, H., & Repenning, A. (2014). Real time assessment of computational thinking. In Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC (pp. 49–52). https://doi.org/10.1109/VLHCC.2014.6883021
Larkin, J. H. (2020). Understanding, Problem Representations, and Skill in Physics. In Thinking and Learning Skills (pp. 153–172). Routledge. https://doi.org/10.4324/9780203056646-13
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32–37. https://doi.org/10.1145/1929887.1929902
Lestari, S., & Roesdiana, L. (2023). Analisis Kemampuan Berpikir Komputasional Matematis Siswa Pada Materi Program Linear. RANGE: Jurnal Pendidikan Matematika, 4(2), 178–188. https://doi.org/10.32938/jpm.v4i2.3592
Lin, S. Y., & Singh, C. (2015). Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions. Physical Review Special Topics - Physics Education Research, 11(2). https://doi.org/10.1103/PhysRevSTPER.11.020105
Lusiana, R., & Andari, T. (2020). Brain based learning to improve students’ higher order thinking skills. Journal of Physics: Conference Series, 1613(1). https://doi.org/10.1088/1742-6596/1613/1/012004
Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012
Mairani, E., & Simatupang, S. (2018). Pengaruh Model Problem Based Learning Terhadap Hasil Belajar Ranah Kognitif Tingkat Tinggi Siswa Pada Materi Suhu Dan Kalor Kelas X Semester Ii Sma Negeri 5 Tanjung Balai T.P 2016/2017. INPAFI (Inovasi Pembelajaran Fisika), 6(1). https://doi.org/10.24114/inpafi.v6i1.9488
Mao, X., & Sen, C. (2018). Physics-based semantic reasoning for function model decomposition. Proceedings of the ASME Design Engineering Technical Conference, 1A-2018, V01AT02A029. https://doi.org/10.1115/DETC201886273
Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational thinking, digital competence and 21st century skills when learning programming in K-9. Education Inquiry, 11(1), 1–17. https://doi.org/10.1080/20004508.2019.1627844
Novitasari, D., Pujiastuti, H., & Sudiana, R. (2021). Kemampuan Berpikir Tingkat Tinggi ditinjau dari Gaya Kognitif Visualizer dan Verbalizer Siswa dalam Menyelesaikan Soal Matematika. Jurnal Cendekia: Jurnal Pendidikan Matematika, 05(02), 1476–1487. https://doi.org/10.31004/cendekia.v5i2.662
Pei, C. (Yu), Weintrop, D., & Wilensky, U. (2018). Cultivating Computational Thinking Practices and Mathematical Habits of Mind in Lattice Land. Mathematical Thinking and Learning, 20(1), 75–89. https://doi.org/10.1080/10986065.2018.1403543
Podolefsky, N. S., & Finkelstein, N. D. (2007). Analogical scaffolding and the learning of abstract ideas in physics: Empirical studies. Physical Review Special Topics-Physics Education Research, 3(2), 10109. https://doi.org/10.1103/PhysRevSTPER.3.020104
Roast, C., & Uruchurtu, E. (2016, September). Reflecting on the Physics of Notations applied to a visualisation case study. In Proceedings of the 6th mexican conference on human-computer interaction (pp. 24-31). https://doi.org/10.1145/2967175.2967383
RodrÃguez-MartÃnez, J. A., González-Calero, J. A., & Sáez-López, J. M. (2020). Computational thinking and mathematics using Scratch: an experiment with sixth-grade students. Interactive Learning Environments, 28(3), 316–327. https://doi.org/10.1080/10494820.2019.1612448
Sartika, D., & Humairah, N. A. (2018). Analyzing Students’ Problem Solving Difficulties on Modern Physics. Journal of Physics: Conference Series, 1028(1). https://doi.org/10.1088/1742-6596/1028/1/012205
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003
Supiarmo, G., Mardhiyatirrahmah, L., & Turmudi, T. (2021). Pemberian Scaffolding untuk Memperbaiki Proses Berpikir Komputasional Siswa dalam Memecahkan Masalah Matematika. Jurnal Cendekia : Jurnal Pendidikan Matematika, 5(1), 368–382. https://doi.org/10.31004/cendekia.v5i1.516
Supiarmo, G., Turmudi, & Elly Susanti. (2021). Proses Berpikir Komputasional Siswa Dalam Menyelesaikan Soal Pisa Konten Change and Relationship Berdasarkan Self-Regulated Learning. Numeracy, 8(1), 58–72. https://doi.org/10.46244/numeracy.v8i1.1378
Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers and Education, 148. https://doi.org/10.1016/j.compedu.2019.103798
Taub, R., Armoni, M., & Ben-Ari, M. M. (2014). Abstraction as a bridging concept between computer science and physics. ACM International Conference Proceeding Series, 16–19. https://doi.org/10.1145/2670757.2670777
Tedre, M., & Denning, P. J. (2016). The long quest for computational thinking. ACM International Conference Proceeding Series, 120–129. https://doi.org/10.1145/2999541.2999542
Tedre, M., & Denning, P. J. (2021). Computational Thinking: A Professional and Historical Perspective. In Computational Thinking in Education: A Pedagogical Perspective (pp. 1–17). Routledge. https://doi.org/10.4324/9781003102991-1
Tikva, C., & Tambouris, E. (2021). Mapping computational thinking through programming in K-12 education: A conceptual model based on a systematic literature Review. Computers and Education, 162. https://doi.org/10.1016/j.compedu.2020.104083
Ung, L. L., Labadin, J., & Mohamad, F. S. (2022). Computational thinking for teachers: Development of a localised E-learning system. Computers and Education, 177, 104379. https://doi.org/10.1016/j.compedu.2021.104379
Velásquez-Rojas, F., & Laguna, M. F. (2021). The Knowledge Acquisition Process from a Complex System Perspective: Observations and Models. Nonlinear Dynamics, Psychology, and Life Sciences, 25(1), 41–67. https://doi.org/10.48550/arXiv.2103.06926
Voskoglou, M. G., & Buckley, S. (2012). Problem Solving and Computational Thinking in a Learning Environment. ArXiv Preprint ArXiv:1212.0750. https://doi.org/10.48550/arXiv.1212.0750
Walid, A., Sajidan, S., Ramli, M., & Kusumah, R. G. T. (2019). Construction of the assessment concept to measure students’ high order thinking skills. Journal for the Education of Gifted Young Scientists, 7(2), 237–251. https://doi.org/10.17478/jegys.528180
Wang, C., Shen, J., & Chao, J. (2022). Integrating Computational Thinking in STEM Education: A Literature Review. International Journal of Science and Mathematics Education, 20(8), 1949–1972. https://doi.org/10.1007/s10763-021-10227-5
Widyaningsih, S. W., Yusuf, I., Prasetyo, Z. K., & Istiyono, E. (2020). Online Interactive Multimedia Oriented to HOTS through E-Learning on Physics Material about Electrical Circuit. JPI (Jurnal Pendidikan Indonesia), 9(1), 1. https://doi.org/10.23887/jpi-undiksha.v9i1.17667
Yadav, A., Hong, H., & Stephenson, C. (2016). Computational Thinking for All: Pedagogical Approaches to Embedding 21st Century Problem Solving in K-12 Classrooms. In TechTrends (Vol. 60, Issue 6, pp. 565–568). Springer. https://doi.org/10.1007/s11528-016-0087-7
Yin, Y., Hadad, R., Tang, X., & Lin, Q. (2020). Improving and Assessing Computational Thinking in Maker Activities: the Integration with Physics and Engineering Learning. Journal of Science Education and Technology, 29(2), 189–214. https://doi.org/10.1007/s10956-019-09794-8
Yuntawati, Y., Sanapiah, S., & Aziz, L. A. (2021). Analisis Kemampuan Computational Thinking Mahasiswa Dalam Menyelesaikan Masalah Matematika. Media Pendidikan Matematika, 9(1), 34. https://doi.org/10.33394/mpm.v9i1.3898
Yusuf, I., & Widyaningsih, S. W. (2019). HOTS profile of physics education students in STEM-based classes using PhET media. Journal of Physics: Conference Series, 1157(3). https://doi.org/10.1088/1742-6596/1157/3/032021
Zhao, S., Wang, C., & Sahebi, S. (2020). Modeling Knowledge Acquisition from Multiple Learning Resource Types. In Proceedings of the 13th International Conference on Educational Data Mining, EDM 2020. https://doi.org/10.48550/arXiv.2006.13390
Author Biographies
Rabiudin, Institut Agama Islam Negeri Sorong
Erwinestri Hanidar Nur Afifi, Institut Agama Islam Negeri Sorong, Sorong
Tiara Widya Hastuti, Institut Agama Islam Negeri Sorong, Sorong
Dian Choiru Nisa, Institut Agama Islam Negeri Sorong, Sorong
License
Copyright (c) 2023 Rabiudin, Erwinestri Hanidar Nur Afifi, Tiara Widya Hastuti, Dian Choiru Nisa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).