The Implementation of Latent Gaussian Model in the Forecasting Process

Authors

Elyn Prina , Yusep Suparman , Gumgum Darmawan

DOI:

10.29303/jppipa.v9i12.5835

Published:

2023-12-20

Issue:

Vol. 9 No. 12 (2023): December

Keywords:

Bayesian, Forecasting Process, Latent Gaussian Model, Tax

Research Articles

Downloads

How to Cite

Prina, E., Suparman, Y. ., & Prina, G. (2023). The Implementation of Latent Gaussian Model in the Forecasting Process. Jurnal Penelitian Pendidikan IPA, 9(12), 12155–12165. https://doi.org/10.29303/jppipa.v9i12.5835

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

This research aims to determine the implementation of the Latent Gaussian Model in the forecasting process. This research focuses on developing a forecasting model using the Multivariate Latent Gaussian Model (LGM) approach with shared components. which offers a more accurate representation without the assumption of stationarity and cointegration as it accommodates random components in the model. The forecasting results for the five KPPs are considered to have a very good level of accuracy with MAPE values < 10%. This shows that LGM can achieve reliable forecasting when applied to the real life problems. This condition supports forecasting and can be an effective and targeted benchmark. The Latent Gaussian Model using the Bayesian Approach in parameter estimation can be utilized in forecasting Personal Income Tax Article 25/29. This is supported by the highly accurate MAPE value of 0.01%. The implementation of the developed model is not limited to forecasting Personal Income Tax Article 25/29. but can also be used in various other fields. With its hierarchical structure. the Bayesian approach proves to be an effective method for addressing complex modeling challenges.

References

Aguerrebere. C.. Almansa. A.. Gousseau. Y.. Delon. J.. & Musé. P. (2014). A Hyperprior Bayesian Approach for Solving Image Inverse Problems. International Conference on Computational Photography. Retrieved from https://shorturl.asia/d98P2

Badan Kebijakan Fiskal. (2016). Mengelola Tantangan untuk Meningkatkan Kesejahteraan. Kementerian Keuangan. Retrieved from https://fiskal.kemenkeu.go.id/files/tekf/file/tinjauanekonomi_edisi5-2016.pdf

Bawazier, F. (2018). Reformasi Pajak di Indonesia Tax Reform In Indonesia. Jurnal Legislasi Indonesia, 8(1), 1-28. Retrieved from https://shorturl.asia/5dG4J

Blangiardo. M.. & Cameletti. M. (2015). Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley and Sons. Inc.

Chiuchiolo. C. (2022). Joint Posterior Inference for Latent Gaussian Models and extended strategies using INLA. (Doctoral dissertation). Retrieved from https://repository.kaust.edu.sa/handle/10754/679224

Cyril. C. (2017). Forecasting Tax Revenue and its Volatility in Tanzania. African Journal of Economic Review. V(I). Retrieved from https://www.ajol.info/index.php/ajer/article/view/149255

Erdoğdu. H.. & Yorulmaz. R. (2019). Comparison of Tax Revenue Forecasting Models for Turkey. In S. Oktar & Y. Taşkın. 34. International Public Finance Conference (pp. 482–492). Istanbul University Press. https://doi.org/10.26650/PB/SS10.2019.001.075

Fathoni. M. I.. & Saputra. A. (2023). Forecasting Value-Added Tax (VAT) revenue using Autoregressive Integrated Moving Average (ARIMA) Box-Jenkins method. Scientax. 4(2). 205–218. https://doi.org/10.52869/st.v4i2.568

Gelman. A.. Carlin. J. B.. Stern. H. S.. Dunson. D. B.. Vehtari. A.. & Rubin. D. B. (2013). Bayesian Data Analysis Third edition. Chapman and Hall/CRC. https://doi.org/10.1201/b16018

Giacomini. R.. & Kitagawa. T. (2021). Robust Bayesian Inference for Setâ€Identified Models. Econometrica. 89(4). 1519–1556. https://doi.org/10.3982/ECTA16773

Gómez-Rubio. V.. Palmí-Perales. F.. López-Abente. G.. Ramis-Prieto. R.. & Fernández-Navarro. P. (2019). Bayesian joint spatio-temporal analysis of multiple diseases. SORT. Statistics and Operations Research Transactions. 43. 51–74. https://doi.org/10.2436/20.8080.02.79

Jaya. I. G. N. M.. & Andriyana. Y. (2020). Analisis Data Spasial Perspektif Bayesian. Alqaprint.

Jaya. I. G. N. M.. Chadidjah. A.. Darmawan. G.. Princidy. J. C.. & Kristiani. A. F. (2022). Does the Restriction of Human Mobility Significantly Control COVID-19 Transmission in Jakarta. Indonesia? Global Versus Local Regression Models [Preprint]. Mathematics & Computer Science. https://doi.org/10.20944/preprints202209.0271.v1

Jaya. I. G. N. M.. & Folmer. H. (2020). Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung. Indonesia. Journal of Geographical Systems. 22(1). 105–142. https://doi.org/10.1007/s10109-019-00311-4

Jenkins. G. P.. Kuo. C. Y.. & Shukla. G. P. (n.d.). Tax Analysis and Revenue Forecasting: Issues and Techniques. Harvard Institute for International Development.

Kemenkeu. (2023. May 5). Reformasi Perpajakan untuk Penciptaan Keadilan. Peningkatan Kepatuhan. dan Penguatan Fiskal. Retrieved from https://fiskal.kemenkeu.go.id/publikasi/siaran-pers-detil/326

Kim. S.. & Kim. H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting. 32(3). 669–679. https://doi.org/10.1016/j.ijforecast.2015.12.003

Lawson. A. B. (2013). Bayesian Disease Mapping Hierarchical Modeling in Spatial Epidemiology. CRC Press.

Lee. D. (2011). A comparison of conditional autoregressive models used in Bayesian disease mapping. Spatial and Spatio-Temporal Epidemiology. 2(2). 79–89. https://doi.org/10.1016/j.sste.2011.03.001

Martino. S.. & Riebler. A. (2020). Integrated Nested Laplace Approximations (INLA). Wiley StatsRef: Statistics Reference Online. 1–19. https://doi.org/10.1002/9781118445112.stat08212

Morrison. K. T.. Shaddick. G.. Henderson. S. B.. & Buckeridge. D. L. (2016). A latent process model for forecasting multiple time series in environmental public health surveillance: A latent process model for forecasting multiple time series in environmental public health surveillance. Statistics in Medicine. 35(18). 3085–3100. https://doi.org/10.1002/sim.6904

Ofori. M. S.. Fumey. A.. & Nketiah-Amponsah. E. (2020). Forecasting Value Added Tax Revenue in Ghana. 4(2). Retrieved from https://ojs.tripaledu.com/jefa/article/view/58

Oleson. J. J.. Smith. B. J.. & Kim. H. (2021). Joint Spatio-Temporal Modeling of Low Incidence Cancers Sharing Common Risk Factors. Journal of Data Science. 6(1). 105–123. https://doi.org/10.6339/JDS.2008.06(1).382

Opitz, T. (2017). Latent Gaussian modeling and INLA: A review with focus on space-time applications. Journal de la société française de statistique, 158(3), 62-85. Retrieved from http://www.numdam.org/item/JSFS_2017__158_3_62_0/

Richardson, S., Abellan, J. J., & Best, N. (2006). Bayesian spatio-temporal analysis of joint patterns of male and female lung cancer risks in Yorkshire (UK). Statistical methods in medical research, 15(4), 385-407. https://doi.org/10.1191/0962280206sm458oa

Robert. C.. & Casella. G. (2011). A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data. Statistical Science. 26(1). https://doi.org/10.1214/10-STS351

Rue. H.. & Held. L. (2005). Gaussian Markov Random Fields. Chapman and Hall/CRC.

Rue. H.. Martino. S.. & Chopin. N. (2009). Approximate Bayesian Inference for Latent Gaussian models by using Integrated Nested Laplace Approximations. Journal of the Royal Statistical Society Series B: Statistical Methodology. 71(2). 319–392. https://doi.org/10.1111/j.1467-9868.2008.00700.x

Van De Schoot. R.. Depaoli. S.. King. R.. Kramer. B.. Märtens. K.. Tadesse. M. G.. Vannucci. M.. Gelman. A.. Veen. D.. Willemsen. J.. & Yau. C. (2021). Bayesian statistics and modelling. Nature Reviews Methods Primers. 1(1). 1. https://doi.org/10.1038/s43586-020-00001-2

Van De Schoot. R.. Kaplan. D.. Denissen. J.. Asendorpf. J. B.. Neyer. F. J.. & Van Aken. M. A. G. (2014). A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research. Child Development. 85(3). 842–860. https://doi.org/10.1111/cdev.12169

Wagenmakers. E.-J.. Lee. M.. Lodewyckx. T.. & Iverson. G. J. (2008). Bayesian Versus Frequentist Inference. In H. Hoijtink. I. Klugkist. & P. A. Boelen (Eds.). Bayesian Evaluation of Informative Hypotheses (pp. 181–207). Springer New York. https://doi.org/10.1007/978-0-387-09612-4_9

Wasserman, L. A. (1989). A robust Bayesian interpretation of likelihood regions. The Annals of Statistics, 17(3), 1387-1393. Retrieved from https://projecteuclid.org/journals/annals-of-statistics/volume-17/issue-3/A-Robust-Bayesian-Interpretation-of-Likelihood-Regions/10.1214/aos/1176347277.short

Wei. W. W. S. (2019). Multivariate Time Series Analysis and Applications. John Wiley & Sons Ltd.

Author Biographies

Elyn Prina, Department of Statistics, Universitas Padjadjaran

Yusep Suparman, Post-Graduate Program in Applied Statistics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Sumedang 45363, Indonesia

Gumgum Darmawan, Department of Statistics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Sumedang 45363, Indonesia

License

Copyright (c) 2023 Elyn Prina, Yusep Suparman, Gumgum Darmawan

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).