Noni (Morinda Citrifolia) Ethanol Extract Lowered Blood Glucose Levels, Increased Glutathione Peroxidase Activity, And Decreased Malondialdehyde in White Rats Model of Diabetes
DOI:
10.29303/jppipa.v9i12.6076Published:
2023-12-20Issue:
Vol. 9 No. 12 (2023): DecemberKeywords:
Blood Glucose, Diabetes Mellitus, Flavonoids, Glutathione Peroxidase, Metabolic, MalondialdehydeResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Diabetes mellitus can increase oxidative stress and damage cells. Noni fruit has antibacterial, antifungal, antitumor, analgesic, hypotensive, and anti-inflammatory benefits, can boost immunity, and has antioxidant content. Noni contains phenolic compounds (anthraquinones, acuities, asperulosides, and scopoletin), organic acids (capric and caprylic acids), and alkaloids (xeronine). The effect of noni ethanol extract can significantly reduce blood glucose (P<0.05) of the T2 group (177.00±137.78) and T3 (159.40±86.53) when compared to the C+ group (511.00±131.45). The T1 group (387.40±170.06) had no significant difference (P>0.05) when compared to the C+ group (511.00±131.45), but there was a decrease in the average yield at T1 (387.40±170.06). Serum malondialdehyde (MDA) examination showed a significant decrease (p<0.05) in T1 (1188.32±93.41), while in T2 (1385.35±38.65) and T3 (1460.32±42.51) was not significant (p<0.05). Examination of serum glutathione peroxidase (GPX) showed a significant decrease in T1 (119.97±37.45), there was a decrease in GPX levels, while in the T2 group (236.14±6.05) and T3 (185.24±43.07), there was no decrease. Noni ethanol extract can lower blood glucose levels, reduce Malondialdehyde levels, and prevent increased activity of the enzyme glutathione peroxidase. Flavonoid compounds in noni ethanol extract can avoid increased blood glucose and reduce free radicals formed due to hyperglycemia conditions.
Â
References
Adhikary, M., Mukhopadhyay, K., & Sarkar, B. J. J. o. F. B. (2021). Flavonoidâ€rich wheatgrass (Triticum aestivum L.) diet attenuates diabetes by modulating antioxidant genes in streptozotocinâ€induced diabetic rats. Journal of Food Biochemistry, 45(4),e13643. https://doi.org/10.1111/jfbc.13643
Adiaksa, B. W., Muchsin, W., & Mustamin, R. J. J. P. P. I. (2023). Effectiveness of Topical Garlic Extract (Allium sativum) Cream on Wound Healing in Mice with Acute Injury Model Case Review of Vascular Endothelial Growth Factor Cytokine Expression. Jurnal Penelitian Pendidikan IPA, 9(7), 5248-5254. https://doi.org/10.29303/jppipa.v9i7.3956
Agustikawati, N., Andayani, Y., & Suhendra, D. J. J. P. P. I. (2017). Uji aktivitas antioksidan dan penapisan fitokimia dari ekstrak daun pakoasi dan kluwih sebagai sumber antioksidan alami. Jurnal Penelitian Pendidikan IPA, 3(2). https://doi.org/10.29303/jppipa.v3i2.93
Basit, A., Fawwad, A., Qureshi, H., & Shera, A. J. B. o. (2018). Prevalence of diabetes, pre-diabetes and associated risk factors: second National Diabetes Survey of Pakistan (NDSP). Diabetes and Endocrinology Research, 8(8), e020961. http://dx.doi.org/10.1136/bmjopen-2017-020961
Chatterjee, S., Khunti, K., & Davies, M. J. J. T. l. (2017). Type 2 diabetes. The Lancet, 389(10085), 2239-2251. https://doi.org/10.1016/S0140-6736(17)30058-2
Cho, N. H., Shaw, J., Karuranga, S., Huang, Y., da Rocha Fernandes, J., & Ohlrogge, A.,. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice. 138, 271-281. https://doi.org/10.1016/j.diabres.2018.02.023
Dahlan, K., Murti, K., & Muradi, A. J. J. P. P. I. (2023). Literature Review: Role of Vitamin D in Diabetic Foot Ulcer Wound Healing. Jurnal Penelitian Pendidikan IPA, 9(10), 854-867. https://doi.org/10.29303/jppipa.v9i10.5135
Decroli, E., Manaf, A., Syahbuddin, S., Syafrita, Y., & Dillasamola, D. J. O. a. M. j. o. m. s. (2019). The correlation between malondialdehyde and nerve growth factor serum level with diabetic peripheral neuropathyscore. Macedonian Journal of Medical Sciences, 7(1), 103. https://doi.org/10.3889/oamjms.2019.029
Doroshow, J. H. J. T. L. (1995). Glutathione peroxidase and oxidativestress. Toxicology Letters, 82, 395-398. https://doi.org/10.1016/0378-4274(95)03570-2
Fatmawati, F., Suswani, A., & Nurlina, N. J. J. P. P. I. (2023). Comparison of the Rate of Depression in Early and Late Elderly Women with Diabetes Mellitus. Jurnal Penelitian Pendidikan IPA, 9(7), 5329-5332. https://doi.org/10.29303/jppipa.v9i7.3658
Hajiaghaalipour, F., Khalilpourfarshbafi, M., & Arya, A. J. I. j. o. b. s. (2015). Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. International Journal of Biological Sciences, 11(5), 508. https://doi.org/10.7150/ijbs.11241
Hamzah, A. H. P., Harijati, S., Pangerapan, S. B., & Suriani, C. J. J. P. P. I. (2023). Ethnobotanical Identification of Medicinal Plants Used by the Sangihe Tribe in Sangihe Archipelago District, North Sulawesi. Jurnal Penelitian dan Pendidikan IPA 9(7), 5765-5772. https://doi.org/10.29303/jppipa.v9i7.3924
Harun, H., Veronike, E., Kam, A., & Amelia, R. J. J. P. P. I. (2023). Correlation Between Oxidative Stress, SIRT1 Serum Level, and eGFR on Elderly. Jurnal Penelitian dan Pendidikan IPA, 9(8), 6432-6438. https://doi.org/10.29303/jppipa.v9i8.4916
Hasri, H., Sari, T. J. A. A., & Chemistry, E. (2018). The Analysis Total Phenolic Extract Noni Fruit (Morinda citrifolia L.) as Inhibiting Activity of Bacteria. Analiytical and Envoronmental Chemistry, 3(1). http://dx.doi.org/10.23960/aec.v3.i1.2018.p22-29
Lassie, N., Ashan, H., Triola, S., & Widiastuti, W. J. J. P. P. I. (2023). Risk Factors of Opthalmoplegia in Diabetes Mellitus. Jurnal Penelitian Pendidikan IPA, 9(10), 868-875. https://doi.org/10.29303/jppipa.v9i10.4676
Maaliki, D., Shaito, A. A., Pintus, G., El-Yazbi, A., & Eid, A. H. J. C. o. i. p. (2019). Flavonoids in hypertension: A brief review of the underlying mechanisms. Current Opinion in Pharmacology, 45, 57-65. https://doi.org/10.1016/j.coph.2019.04.014
Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. J. O. (2022). Free radical properties, source and targets, antioxidant consumption and health. OXYGEN, 2(2), 48-78. https://doi.org/10.3390/oxygen2020006
Matsumoto, S., Koshiishi, I., Inoguchi, T., Nawata, H., & Utsumi, H. J. F. r. r. (2003). Confirmation of superoxide generation via xanthine oxidase in streptozotocin-induced diabetic mice. Free Radical Research, 37(7), 767-772. https://doi.org/10.1080/1071576031000107344
Mentari, I. N., Atfal, B., & Aini, A. J. J. P. P. I. (2023). Description of Albuminuria Levels in Patients with Type 2 Diabetes Mellitus According to Length of Diagnosis at West Nusa Tenggara Provincial Hospital. Jurnal Penelitian Pendidikan IPA, 9(9), 7051-7055. https://doi.org/10.29303/jppipa.v9i9.3615
Mishra, K. K., Kaur, C. D., Sahu, A. K., Panik, R., Kashyap, P., & Mishra, S. P.,. (2020). Medicinal Plants Having Antifungal Properties. India: Intechopen. https://doi.org/10.5772/intechopen.90674
Nindatu, M., Kaihena, M., Hieriej, A., Killay, A., & Jotlely, H. J. J. P. P. I. (2023). Antioxidant and Antimalarial Potential of Methanolic Extract from Leaves of Titi Tree (Alstonia sp). Jurnal Penelitian Pendidikan IPA, 9(10), 8918-8924. https://doi.org/10.29303/jppipa.v9i10.4865
Oteiza, P. I., Fraga, C. G., & Galleano, M. J. R. B. (2021). Linking biomarkers of oxidative stress and disease with flavonoid consumption: From experimental modelstohumans. Redox Biology, 42, 101914. https://doi.org/10.1016/j.redox.2021.101914
Proença, C., Ribeiro, D., Freitas, M., Fernandes, E. J. C. R. i. F. S., & Nutrition. (2022). Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: A review. Critical Reviews in Food and Nutrition, 62(12), 3137-3207. https://doi.org/10.1080/10408398.2020.1862755
Qosimah, D., Mandasari, C., & Setyawati, D. J. J. P. P. I. (2023). Review of the Role of Probiotic and Herbal Supplements as Antibacterial, Antioxidant, and Immunomodulatory Against Aeromonas hydrophila). Jurnal Penelitian Pendidikan IPA, 9(6), 178-189. https://doi.org/10.29303/jppipa.v9i6.3621
Rajivgandhi, G., Saravanan, K., Ramachandran, G., Li, J.-L., Yin, L., Quero, F., Manoharan, N. J. I. J. O. B. M. (2020). Enhanced anti-cancer activity of chitosan loaded Morinda citrifolia essential oil against A549 human lung cancer cells. International Journal of Biological Macromolecules, 164, 4010-4021. https://doi.org/10.1016/j.ijbiomac.2020.08.169
Rao, U.M, & Subramanian, S. J. M. C. R. (2009). Biochemical evaluation of antihyperglycemic and antioxidative effects of Morinda citrifolia fruit extract studied in streptozotocin-induced diabetic rats. Medicinal Chemistry Research, 18, 433-446. https://doi.org/10.1007/s00044-008-9140-1
Rolo, A. P., Palmeira, C. M. J. T., & pharmacology, a. (2006). Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology, 212(2), 167-178. https://doi.org/10.1016/j.taap.2006.01.003
Sayem, A. S. M., Arya, A., Karimian, H., Krishnasamy, N., Ashok Hasamnis, A., & Hossain, C. F. J. M. (2018). Action of phytochemicals on insulin signaling pathways accelerating glucose transporter (GLUT4) protein translocation. Molecules, 23(2), 258. https://doi.org/10.3390/molecules23020258
Semaan, D., Igoli, J., Young, L., Marrero, E., Gray, A., & Rowan, E. J. J. o. E. (2017). In vitro anti-diabetic activity of flavonoids and pheophytins from Allophylus cominia Sw. on PTP1B, DPPIV, alpha-glucosidase and alpha-amylase enzymes. Journal of Ethnopharmacology, 203, 39-46. https://doi.org/10.1016/j.jep.2017.03.023
Slika, H., Mansour, H., Wehbe, N., Nasser, S. A., Iratni, R., & Nasrallah, G. (2022). Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomedicine & Pharmacotherapy, 146, 112442. https://doi.org/10.1016/j.biopha.2021.112442
Souza, L. C., Antunes, M. S., Borges Filho, C., Del Fabbro, L., de Gomes, M. G., Goes, A. T. R., . . . Behavior. (2015). Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain. Pharmacology Biochemistru and Behavior, 134,22-30. https://doi.org/10.1016/j.pbb.2015.04.010
Sundaram, R., Nandhakumar, E., Haseena Banu, H. J. T. m., & methods. (2019). Hesperidin, a citrus flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Toxicology Mechanisms and Methods, 29(9), 644-653. https://doi.org/10.1080/15376516.2019.1646370
Tandi, J., Fahri, M., Fatma, N., Anggi, V., Patala, R., & Handayani, T. W. J. J. P. P. I. (2023). Effectiveness Test of Mangrove Leaf (Rhizophora Apiculata) on Decreasing Blood Glucose Levels and Pancreas Histopatology Streptozotocin Induced Male White Rats. Jurnal Penelitian Pendidikan IPA, 9(6), 4596-4604. https://doi.org/10.29303/jppipa.v9i6.3789
Ungur, R. A., Borda, I. M., Codea, R. A., Ciortea, V. M., Năsui, B. A., Muste, S., . . . Crăciun, E. C. J. M. (2022). A flavonoid-rich extract of Sambucus nigra L. reduced lipid peroxidation in a rat experimental model of gentamicin nephrotoxicity. Materials, 15(3), 772. https://doi.org/10.3390/ma15030772
Wardani, I. S. J. J. P. P. I. (2023). Hidroksi Metil Glutaril Coenzyme-A (HMG CoA) Reduktase Inhibitor and New Onset Diabetes Mellitus: A Review of Correlation and Clinical Implication. Jurnal Penelitan Pendidikan IPA, 9(9), 580-585. https://doi.org/10.29303/jppipa.v9i9.5274
Wulandari, P. J. E. H. I. (2020). Effect of Noni Fruit Extract (Morinda citrifolia) on Glucose Intake to Diabetes Mellitus White Rat Muscle Tissue. Eureka Herba Indonesia, 1(1), 6-10. https://doi.org/10.37275/ehi.v1i1.2
Yan, L. J(2018). Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Models and Experimental Medicine, 1(1), 7-13. https://doi.org/10.1002/ame2.12001
Yaribeygi, H., Atkin, S. L., & Sahebkar, A. J. J. o. c. p. (2019). A review of the molecular mechanisms of hyperglycemiaâ€induced free radical generation leading to oxidative stress. Journal of Cellular Physiology, 234(2), 1300-1312. https://doi.org/10.1002/jcp.27164
Yulianti, E., Mercuriani, I. S., Sugiyarto, L., & Huang, T.-C. J. J. P. P. I. (2023). Antidiabetic Molecular Mechanisms of Active Compounds from Several Orchids. Jurnal Penelitian Pendidikan IPA, 9(8), 373-386. https://doi.org/10.29303/jppipa.v9i8.3940
Author Biographies
I Putu Dedy Arjita, Universitas Islam Al-Azhar, Mataram
I Putu Bayu Agus Saputra, Universitas Islam Al-Azhar, Mataram
Dhika Juliana Sukmana, DIII Medical Laboratory Technology Study Program, Mataram
License
Copyright (c) 2023 I Putu Dedy Arjita, I Putu Bayu Agus Saputra, Dhika Juliana Sukmana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).