Vol. 9 No. 12 (2023): December
Open Access
Peer Reviewed

Stochastic Model of Pneumonia and Meningitis Co-infection Using Continuous Time Markov Chain Approach

Authors

Anggun Praptaningsih , Hadi Sumarno , Paian Sianturi

DOI:

10.29303/jppipa.v9i12.6108

Published:

2023-12-20

Downloads

Abstract

Pneumonia disease is a lung infection caused by Streptococcus pneumoniae. Meningitis is an infection of the meninges and cerebrospinal fluid caused by Streptococcus pneumoniae. Both diseases may occur at the same time. A mathematical model is needed to represent the spread of pneumonia and meningitis co-infection. This study aims to build the stochastic model of pneumonia and meningitis co-infection with CTMC, determine the transition and outbreak probability, and conduct simulations to assess the effect of increasing the contact rate on pneumonia  and meningitis . Based on the computer simulation undertaken, it can be concluded that if  was decreased while was set to be fixed, the probability of disease outbreak decreased.  If was set to be fixed while  was decreased, the probability of disease outbreak decreased. However, the latter is smaller than the previous. Similarly, if  was increased while was set to be fixed, the probability of disease outbreak increased.  If was set to be fixed while  was increased, the probability of disease outbreak increased. However, the latter is smaller than the previous. Moreover, if both  and  were decreased, the probability of disease outbreak was equal to zero.

Keywords:

Co-infection Markov chain Meningitis Pneumonia

References

Adeniyi, M. O., & Oluyo, T. O. (2018). Optimal control model for the transmission dynamics of malaria-pneumonia co-infection with mass action incidence. https://doi.org/10.20944/preprints201809.0186.v1

Allen, L. J., & Lahodny, G. E. (2012). Extinction thresholds in deterministic and stochastic epidemic models. Journal of Biological Dynamics, 590–611. https://doi.org/10.1080/17513758.2012.665502

Asamoah, J. K. K., Nyabadza, F., Jin, Z., Bonyah, E., Khan, M. A., Li, M. Y., & Hayat, T. (2020). Backward bifurcation and sensitivity analysis for bacterial meningitis transmission dynamics with a nonlinear recovery rate. Chaos, Solitons & Fractals, 140, 110237. https://doi.org/10.1016/j.chaos.2020.110237

Brueggemann, A. B., van Rensburg, M. J. J., Shaw, D., McCarthy, N. D., Jolley, K. A., Maiden, M. C. J., van Der Linden, M. P. G., Amin-Chowdhury, Z., Bennett, D. E., Borrow, R., & others. (2021). Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a. The Lancet Digital Health, 3(6), e360--e370. https://doi.org/10.1016/S2589-7500(21)00077-7

Cilloniz, C., Martin-Loeches, I., Garcia, J., & Torres. (2016). Microbial etiology of pneumonia: Epidemiology, diagnosis and resistance patterns. MDPI AG.

Dadlani, A., Afolabi, R. O., Jung, H., Sohraby, K., & Kim, K. (2020). Deterministic Models in Epidemiology: From Modeling to Implementation. https://doi.org/10.48550/arXiv.2004.04675

Delamater, P. L., Street, E. J., Leslie, T. F., Yang, Y. T., & Jacobsen, K. H. (2019). Complexity of the basic reproduction number (R0). Emerging Infectious Diseases, 25(1), 1. https://doi.org/10.3201/eid2501.171901

Diekmann, O., Heesterbeek, J. A., & Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 873–885. https://doi.org/10.1098/rsif.2009.0386

Feldman, C., & Anderson, R. (2019). Meningococcal pneumonia: a review. Pneumonia, 11, 1–13. https://doi.org/10.1186/s41479-019-0062-0

Figueiredo, A. H., Brouwer, M. C., Bijlsma, M. W., Ende, A. V, & Beek, D. V. (2020). Community-acquired pneumonia in patients with bacterial meningitis: a prospective nationwide cohort. Clinical Microbiology and Infection, 513 7–513 11. https://doi.org/10.1016/j.cmi.2019.09.001

Howlett, W. P. (2012). Neurology in Africa Clinical Skills and Neurological Disorders. University of Bergen.

Kotola, B. S., Gebru, D. M., Alemneh, H. T., & others. (2022). Appraisal and Simulation on Codynamics of Pneumonia and Meningitis with Vaccination Intervention: From a Mathematical Model Perspective. Computational and Mathematical Methods in Medicine, 2022. https://doi.org/10.1155/2022/9945047

Kotola, B. S., & Mekonnen, T. T. (2022). Mathematical model analysis and numerical simulation for codynamics of meningitis and pneumonia infection with intervention. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-06253-0

Leach, R., & McLuckie, A. (2009). Respiratory Disease and Its Management. Springer. https://doi.org/10.1007/978-1-84882-095-1_5

Li, M. Y. (2018). An introduction to mathematical modeling of infectious diseases (Vol. 2). Springer.

Lim, W. S. (2022). Encyclopedia of Respiratory Medicine. Elsevier. Retrieved from https://shorturl.asia/SRmQ4

Maity, S., & Mandal, P. S. (2022). A comparison of deterministic and stochastic plant-vector-virus models based on probability of disease extinction and outbreak. Bulletin of Mathematical Biology, 84(3), 41. https://doi.org/10.1007/s11538-022-01001-x

Maliyoni, M. (2021). Probability of disease extinction or outbreak in a stochastic epidemic model for west nile virus dynamics in birds. Acta Biotheoretica, 69(2), 91–116. https://doi.org/10.1007/s10441-020-09391-y

Muhumuza, C., Mayambala, F., & Mugisha, J. Y. T. (2022). A Stochastic Model of Fowl Pox Disease: Estimating the Probability of Disease Outbreak. International Journal of Applied and Computational Mathematics, 8(5), 222. https://doi.org/10.1007/s40819-022-01442-x

Nigmatulina, K. R. (2009). Modeling and responding to pandemic influenza: Importance of population distributional attributes and non-pharmaceutical interventions [Massachusetts Institute of Technology]. Retrieved from http://hdl.handle.net/1721.1/53298

Nurlazuardini, N. N., Kharis, M., & Hendikawati, P. (2016). MODEL EPIDEMI SIRS STOKASTIK DENGANSTUDI KASUS INFLUENZA. UNNES Journal of Mathematics, 5(1), 20–30. https://doi.org/10.15294/UJM.V5I1.13101

Rizzo, A., Frasca, M., & Porfiri, M. (2014). Effect of individual behavior on epidemic spreading in activity-driven networks. Physical Review E, 90(4), 42801. https://doi.org/10.1103/PhysRevE.90.042801

Tambunan, D. R. Y. (2019). Identifikasi Bakteri Streptococcus Pneumonia Pada Pasien Pneumonia Di Rsup H. Adam Malik Medan. Retrieved from http://poltekkes.aplikasi-akademik.com/xmlui/handle/123456789/1505

Tilahun, G. T. (2018). Mathematical model for co-infection of pneumonia and typhoid fever disease with optimal control [JKUAT]. Retrieved from http://hdl.handle.net/123456789/4677

Tilahun, G. T. (2019a). Modelling co-dynamics of pneumonia and meningitis diseases. Advances in Difference Equations. https://doi.org/10.1186/s13662-019-2087-3

Tilahun, G. T. (2019b). Optimal control analysis of pneumonia and meningitis coinfection. Computational and Mathematical Methods in Medicine, 2019. https://doi.org/10.1155/2019/2658971

W.H.O. (2021). Pneumonia. Retrieved from https://www.who.int/news-room/fact-sheets/detail/pneumonia

Watkins, K., Wright, S., Nestour, A., Mathieson, K., Alfaiate, J., Leigh, C., & Ahmar, S. (2017). A call to action on childhood pneumonia FIGHTING FOR. Retrieved from https://www.savethechildren.ca/wp-content/uploads/2017/11/fighting-for-breath-low-res.pdf

Yan, P. (2008). Distribution theory, stochastic processes and infectious disease modelling. Mathematical Epidemiology, 229–293. https://doi.org/10.1007/978-3-540-78911-6_10

Zhang, C., Xiu, L., Xiao, Y., Xie, Z., Ren, L., & Peng, J. (2018). Simultaneous detection of key bacterial pathogens related to pneumonia and meningitis using multiplex PCR coupled with mass spectrometry. Frontiers in Cellular and Infection Microbiology, 8, 107. https://doi.org/10.3389/fcimb.2018.00107

Author Biographies

Anggun Praptaningsih, IPB University

Author Origin : Indonesia

Hadi Sumarno, IPB University

Author Origin : Indonesia

Paian Sianturi, IPB University

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Praptaningsih, A., Sumarno, H., & Sianturi, P. (2023). Stochastic Model of Pneumonia and Meningitis Co-infection Using Continuous Time Markov Chain Approach . Jurnal Penelitian Pendidikan IPA, 9(12), 1415–1425. https://doi.org/10.29303/jppipa.v9i12.6108