Predictive Mapping of Hydrometeorological Disaster Prone Areas in Central Kalimantan

Authors

Indah Gumilang Dwinanda , Kadek Ayu Cintya Adelia , Robiatul Witari Wilda , Febrianto Afli , Tesdiq Prigel Kaloka , Desy Lutfiani Pratiwie

DOI:

10.29303/jppipa.v10i2.6238

Published:

2024-02-25

Issue:

Vol. 10 No. 2 (2024): February

Keywords:

Climate, Drought, Flood, Humidity, Hydrometeorology, Rainfall, Temperature

Research Articles

Downloads

How to Cite

Dwinanda, I. G., Adelia, K. A. C., Wilda, R. W., Afli, F., Kaloka, T. P., & Pratiwie, D. L. (2024). Predictive Mapping of Hydrometeorological Disaster Prone Areas in Central Kalimantan . Jurnal Penelitian Pendidikan IPA, 10(2), 811–819. https://doi.org/10.29303/jppipa.v10i2.6238

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Disaster is an event or a series of events that threatens and disrupts people's lives and livelihoods, caused by natural and/or non-natural factors and human factors, resulting in human casualties, environmental damage, property losses, and psychological impacts. Hydrometeorological disasters are events related to water, atmosphere, and oceans. It is recorded that hydrometeorological disasters occurring in Indonesia reach 86%, including floods, tornadoes, landslides, forest and land fires, and droughts. Specifically, in Central Kalimantan Province, forest and land fires and floods are frequent disasters. Both fall into the category of hydrometeorological disasters, closely related to the climate in Central Kalimantan. In this study, the prediction of rainfall, temperature, and humidity values in Central Kalimantan Province was calculated using the Auto-Regressive Integrated Moving Average method at 5 stations in the province. Subsequently, the prediction analysis of flood events was carried out using the machine learning random forest method based on the rainfall data, temperature, humidity, and event data. According to the calculation results, flood disasters are not predicted to affect almost all areas of Central Kalimantan Province. However, by the end of 2023, it is anticipated that most areas in the province will still be categorized as experiencing a normal level of drought. Notably, there are two areas that must increase awareness of this drought disaster, namely Pulang Pisau and Sampit, especially in October 2023.

References

Administrator Portal Informasi Indonesia. (2023). Air Sebagai Prioritas Utama Pembangunan di Indonesia. Informasi Indonesia. Retrieved from https://indonesia.go.id/kategori/editorial/7000/air-sebagai-prioritas-utama-pembangunan-di-indonesia?lang=1

Ardaneswari, G., Bustamam, A., & Siswantining, T. (2017). Implementation of parallel k-means algorithm for two-phase method biclustering in Carcinoma tumor gene expression data. AIP Conference Proceedings, 1825. https://doi.org/10.1063/1.4978973

Aswin, S., Geetha, P., & Vinayakumar, R. (2018). Deep Learning Models for the Prediction of Rainfall. In Proceedings of the 2018 IEEE International Conference on Communication and Signal Processing, ICCSP 2018. https://doi.org/10.1109/ICCSP.2018.8523829

Badan Nasional Penanggulangan Bencana. (2020). Bencana Alam di Indonesia Tahun 2010 s/d 2020. Retrieved from https://bnpb.go.id/infografis/kejadian-bencana-tahun-2020-2

Badan Nasional Penanggulangan Bencana. (2023). Infografis Update Bencana. Retrieved from https://bnpb.go.id/infografis/infografis-bencana-tahun-2023

Badan Penanggulangan Bencana Daerah. (2021). Data Grafis Luas Kebakaran Hutan dan Lahan (Karhutla) Wilayah Provinsi Kalimantan Tengah. Palangka Raya. Retrieved from https://bnpb.go.id/infografis/kejadian-bencana-tahun-2021

Balai Besar Litbang Sumberdaya Lahan Pertanian (BBSDLP). (2013). Badan Penanggulangan Bencana Daerah. Retrieved from https://sdlp.bsip.pertanian.go.id/publikasi/buku

Bholowalia, P., & Kumar, A. (2014). EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN. International Journal of Computer Applications, 105 (9). https://doi.org/10.5120/18405-9674

Bochenek, B., & Ustrnul, Z. (2022). Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere, 13(2). https://doi.org/10.3390/atmos13020180

Bradley, P. S., Bennett, K. P., & Demiriz, A. (2000). Constrained K-Means Clustering. Retrieved from https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2000-65.pdf

Bustamam, A., Sarwinda, D., Abdillah, B., & Kaloka, T. P. (2020). Detecting Lesion Characteristics of Diabetic Retinopathy Using Machine Learning and Computer Vision. International Journal on Advanced Science, Engineering and Information Technology, 10(4). https://doi.org/10.18517/ijaseit.10.4.8876

Chen, L., Han, B., Wang, X., Zhao, J., Yang, W., & Yang, Z. (2023). Machine Learning Methods in Weather and Climate Applications: A Survey. Applied Sciences, 13(21), 12019. https://doi.org/10.3390/app132112019

Eka Putri, S., Corp, A. F., Rembrandt, Dasman Lanin, Genius Umar, & Mulya Gusman. (2023). Kota Padang: Identifikasi Potensi Bencana Banjir Dan Upaya Mitigasi. Jurnal Ilmiah Multidisiplin Nusantara (JIMNU), 1(3), 116–122. https://doi.org/10.59435/jimnu.v1i3.56

Eni, D., & Adeyeye, F. J. (2015). Seasonal ARIMA Modeling and Forecasting of Rainfall in Warri Town, Nigeria. Journal of Geoscience and Environment Protection, 03(06), 91–98. https://doi.org/10.4236/gep.2015.36015

Fazri, M., Risdawati AP, A., Imron, D. K., Roidatua, M. R., Oktarina, A., Nababan, F. E., & Pertiwi, C. (2022). Risk Identification and Disaster Management at The Village Level: Principal Component Analysis Approach. In Proceedings of the 7th International Conference on Social and Political Sciences (ICoSaPS 2022) (pp. 275–282). Atlantis Press SARL. https://doi.org/10.2991/978-2-494069-77-0_38

Febriansyah, A., Ramadhan, A., Gustiawan, M., Revin, M. R., Maulana, R., Juli, R. Y., & Firmansyah, R. (2020). Penerapan Machine Learning Dalam Mitigasi Banjir Menggunakan Data Mining. Jurnal Nasional Komputasi Dan Teknologi Informasi, 3(3). https://doi.org/10.32672/jnkti.v3i3.2427

Febrianti, A. F., Cabral, A. H., & Anuraga, G. (2018). K-Means Clustering Dengan Metode Elbow Untuk Pengelompokan Kabupaten Dan Kota di Jawa Timur Berdasarkan Indikator Kemiskinan. Artikel Hasil Ilmiah, 863–870. Retrieved from https://karyailmiah.unipasby.ac.id/wp-content/uploads/2019/04/K-Means-Artikel.pdf

Ferdi, Maliki, R. Z., & Saputra, I. A. (2021). Pemetaan Bahaya Banjir di Kecamatan Baolan Kabupaten Tolitoli Provinsi Sulawesi Tengah. Jurnal Dialog Penanggulangan Bencana, 12(1), 13-20. Retrieved from https://jdpb.bnpb.go.id/index.php/jurnal/article/download/195/165

Fitriyaningsih, I., & Basani, Y. (2019). Flood Prediction with Ensemble Machine Learning using BP-NN and SVM. Jurnal Teknologi Dan Sistem Komputer, 7(3), 93–97. https://doi.org/10.14710/jtsiskom.7.3.2019.93-97

Fitriyaningsih, I., Basani, Y., & Ginting, L. M. (2018). Machine Learning: Prosperity of Rainfall, Water Discharge, And Flood with Web Application In Deli Serdang. Jurnal Penelitian Komunikasi Dan Opini Publik, 22(2). https://doi.org/10.33299/jpkop.22.2.1752

Jalaludin, S. (2023). Disaster Mitigation Management by the Regional Disaster Management Agency (BPBD) In Management of Drought Disaster in West Lombok District. Journal Pendidikan Islam, 12(02). https://doi.org/10.30868/ei.v2i02.4028

Jiao, Z., Chen, S., Shi, H., & Xu, J. (2022). Multi-Modal Feature Selection with Feature Correlation and Feature Structure Fusion for MCI and AD Classification. Brain Sciences, 12(1). https://doi.org/10.3390/brainsci12010080

Jing, S., Liu, X., Gong, X., Tang, Y., Xiong, G., Liu, S., Xiang, S., & Bi, R. (2022). Correlation analysis and text classification of chemical accident cases based on word embedding. Process Safety and Environmental Protection, 158, 698–710. https://doi.org/10.1016/j.psep.2021.12.038

Junaidy, A., Sandhyavitri, A., Yusa, M., & Sipil, J. T. (2019). Penggali Air Insitu Dan Peran Serta Masyarakat Di Desa Rimbo Panjang, Kabupaten Kampar, Provinsi Riau. Jurnal Bappeda. https://doi.org/10.47521/selodangmayang.v5iNomor%202.122

Kafi, R. A. L, & Abygail Sihombing, A. (2022). Predicting Omicron Daily New Cases In Indonesia And Its Mean Recurrence Time Using Modified Weighted Markov Chain. J. Ris. & Ap. Mat, 06(01), 63–72. https://doi.org/10.26740/jram.v6n1.p63-72

Kaloka, T. P., Bustamam, A., Lestari, D., & Mangunwardoyo, W. (2019). POLS algorithm to find a local bicluster on interactions between HIV-1 proteins and human proteins. AIP Conference Proceedings, 2084. https://doi.org/10.1063/1.5094280

Luthfin, A. (2023). Research-Based Disaster Mitigation Education Based on the Nusa Tenggara Case Study. In Proceeding of International Conference on Education, Society and Humanity (Vol. 1, No. 1, pp. 393-400). Retrieved from https://www.ejournal.unuja.ac.id/index.php/icesh/article/view/5970

Maryati, S. (2018). Identification of Flood Prone Areas for Natural Disaster Mitigation using Geospatial Approach (A Case Study in Bone Bolango Regency, Gorontalo Province). IOP Conference Series: Earth and Environmental Science, 145(1). https://doi.org/10.1088/1755-1315/145/1/012080

Nugraheni, I. L., Suyatna, A., Setiawan, A., & Abdurrahman. (2022). Flood disaster mitigation modeling through participation community based on the land conversion and disaster resilience. Heliyon, 8(8). https://doi.org/10.1016/j.heliyon.2022.e09889

Pratiwi, D., Putri, D., Syamsul Arif, R., Kartika, J. A., Riski Fathurohman, C., & Apriyanti, D. (2022). Identification and Analysis of Landslide Soil Vulnerability As The Basis Of Disaster Mitigation With Geodetic Measurement Methods And Quantitative Description. Bulletin of Geology, 6(2), 960–967. https://doi.org/10.5614/bull.geol.2022.6.2.4

Prigel Kaloka, T., Siswantining, T., & Bustamam, A. (2021). Analisis Hasil Bicluster Algoritma Pols Pada Interaksi Protein Manusia Dan Hiv-1. J. Ris. & Ap. Mat, 5(1), 60–67. https://doi.org/10.26740/jram.v5n1.p60-67

Prihatin, R. B. (2022). A Brief Study of Actual and Strategic Issues Field of People’s Welfare. Research Center Expertise Agency of DPR RI.

Rosyida, A., Nurmasari, R., & Suprapto. (2019). Analisis Perbandingan Dampak Kejadian Bencana Hidrometeorologi dan Geologi di Indonesia Dilihat dari Jumlah Korban dan Kerusakan Studi: Data Kejadian Bencana Indonesia (2018). Jurnal Dialog Penanggulangan Bencana, 10(1). Retrieved from https://perpustakaan.bnpb.go.id/jurnal/index.php/JDPB/article/view/127

Saranya, T., Sridevi, S., Deisy, C., Chung, T. D., & Khan, M. K. A. A. (2020). Performance Analysis of Machine Learning Algorithms in Intrusion Detection System: A Review. Procedia Computer Science, 171, 1251–1260. https://doi.org/10.1016/j.procs.2020.04.133

Suhartono, Faulina, R., Lusia, D. A., Otok, B. W., Sutikno, & Kuswanto, H. (2012). Ensemble method based on ANFIS-ARIMA for rainfall prediction. In 2012 International Conference on Statistics in Science, Business and Engineering (ICSSBE) (pp. 1-4). IEEE.https://doi.org/10.1109/ICSSBE.2012.6396564

Swasti, O., Kaloka, T. P., Siswantining, T., & Bustamam, A. (2020). Application of bimax, pols, and lcm-mbc to find bicluster on interactions protein between hiv-1 and human. Austrian Journal of Statistics, 49(3 Special Issue), 1–18. https://doi.org/10.17713/ajs.v49i3.1011

Syakur, M. A., Khotimah, B. K., Rochman, E. M. S., & Satoto, B. D. (2018). Integration K-Means Clustering Method and Elbow Method for Identification of the Best Customer Profile Cluster. IOP Conference Series: Materials Science and Engineering, 336(1). https://doi.org/10.1088/1757-899X/336/1/012017

Wardhana, S. G., Aldi, M., & Siregar, I. R. (2022). Prediksi Kecepatan Gelombang Geser (Vs) Menggunakan Machine Learning di Sumur X. JGE (Jurnal Geofisika Eksplorasi), 8(1), 67–77. https://doi.org/10.23960/jge.v8i1.180

Wibawa, A. P., Guntur, M., Purnama, A., Fathony Akbar, M., & Dwiyanto, F. A. (2018). Metode-metode Klasifikasi. In Prosiding Seminar Ilmu Komputer dan Teknologi Informasi (Vol. 3, No. 1). Retrieved from http://download.garuda.kemdikbud.go.id/article.php?article=985432&val=14265&title=Metode-metode%20Klasifikasi

Yusuf, A., Hapsoh, Siregar, S. H., & Nurrochmat, D. R. (2019). Analisis Kebakaran Hutan Dan Lahan Di Provinsi Riau. Jurnal Dinamika Lingkungan Indonesia, 6(2), 67–84. http://dx.doi.org/10.31258/dli.6.2.p.67-84

Author Biographies

Indah Gumilang Dwinanda, Palangka Raya University

Kadek Ayu Cintya Adelia, Palangka Raya University

Robiatul Witari Wilda, Palangka Raya University

Febrianto Afli, Palangka Raya University

Tesdiq Prigel Kaloka, Department of Informatic Enginering

Desy Lutfiani Pratiwie, Regional Disaster Management Agency

License

Copyright (c) 2024 Indah Gumilang Dwinanda, Kadek Ayu Cintya Adelia, Robiatul Witari Wilda, Febrianto Afli, Tesdiq Prigel Kaloka, Desy Lutfiani Pratiwie

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).