Unraveling the Seismic Signal Anomaly at Mount Rinjani Station: In-Depth Exploration with the Detrended Fluctuation (DFA) Analysis Method in Connection with the 2018 Big Earthquake on Lombok Island, West Nusa Tenggara

Authors

Bulkis Kanata , Rosmaliati , Teti Zubaidah , Made Sutha Yadnya , Abdullah Zainuddin , Dwi Ratnasari , Nur Fitratunnisa , Muhammad Fajrin Akbar

DOI:

10.29303/jppipa.v10i1.6263

Published:

2024-01-25

Issue:

Vol. 10 No. 1 (2024): January

Keywords:

Anomaly, Detrended fluctuation analysis, Earthquake, Precursor, Seismic signal

Research Articles

Downloads

How to Cite

Kanata, B., Rosmaliati, Zubaidah, T. ., Yadnya, M. S. ., Zainuddin, A. ., Ratnasari, D. ., … Akbar, M. F. . (2024). Unraveling the Seismic Signal Anomaly at Mount Rinjani Station: In-Depth Exploration with the Detrended Fluctuation (DFA) Analysis Method in Connection with the 2018 Big Earthquake on Lombok Island, West Nusa Tenggara . Jurnal Penelitian Pendidikan IPA, 10(1), 116–123. https://doi.org/10.29303/jppipa.v10i1.6263

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

We analyzed the seismic signals of the Mount Rinjani station to identify possible seismic anomalies before a series of major earthquakes on Lombok Island in 2018. We observe anomalies before earthquake events Mw >= 5.90. This research applies the detrended fluctuation analysis (DFA) method to investigate possible earthquake precursors associated with the analyzed earthquake. The results showed a relationship between scaling seismic signals (α) that exceeds the threshold of α values during the analysis period, and there is a deviation of the root mean square fluctuations in the corresponding scaling that should be rising but constant. The value of α with constant root mean square fluctuations occurs one to three days before the preliminary earthquake Mw 6.40 (28/07/2018) UTC and eight to 10 days before the main earthquake Mw 6.90 (05/08/2018). The Mw 6.90 earthquake had the most magnitude and could significantly contribute to the appearance of seismic anomalies.

References

Akhoondzadeh, M., De Santis, A., Marchetti, D., Piscini, A., & Jin, S. (2019). Anomalous seismo-LAI variations potentially associated with the 2017 Mw = 7.3 Sarpol-e Zahab (Iran) earthquake from Swarm satellites, GPS-TEC and climatological data. Advances in Space Research, 64(1), 143–158. https://doi.org/10.1016/j.asr.2019.03.020

Alghushairy, O., Alsini, R., Soule, T., & Ma, X. (2021). A review of local outlier factor algorithms for outlier detection in big data streams. Big Data and Cognitive Computing, 5(1), 1–24. https://doi.org/10.3390/bdcc5010001

Bolton, D. C., Marone, C., Shokouhi, P., Rivière, J., Rouet-Leduc, B., Hulbert, C., & Johnson, P. A. (2019). Characterizing acoustic signals and searching for precursors during the laboratory seismic cycle using unsupervised machine learning. Seismological Research Letters, 90(3), 1088–1098. https://doi.org/10.1785/0220180367

Fajar, A., Sarjan, N., & Muchtaranda, I. H. (2023). Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Civil and Architecture). In Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Civil and Architecture). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-088-6

Fan, J., Zhou, D., Shekhtman, L. M., Shapira, A., Hofstetter, R., Marzocchi, W., Ashkenazy, Y., & Havlin, S. (2019). Possible origin of memory in earthquakes: Real catalogs and an epidemic-type aftershock sequence model. Physical Review E, 99(4). https://doi.org/10.1103/PhysRevE.99.042210

Fazriyanti, L., Tahjono, A., & Febriani, F. (2020). Analisis Anomali Sinyal Geomagnetik Menggunakan Metode Detrended Fluctuation Analysis Pada Gempa Bumi Magnitudo 6,1 di Lebak, Banten. Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics, 3(1), 53–60. https://doi.org/10.15408/fiziya.v3i1.15091

Febriani, F., Dewi, C. N., Anggono, T., Syuhada, Prasetio, A. D., Hasib, M., Sulaiman, A., Suprihatin, H. S., Ahadi, S., Syirojudin, M., Hasanudin, & Marsyam, I. (2022). Application of detrended fluctuation analysis (DFA) for short-term earthquake precursor investigation: A case study for January 23, 2018’s Java earthquake. AIP Conference Proceedings, 2652. https://doi.org/10.1063/5.0106294

Filatov, D. M., & Lyubushin, A. A. (2020). Precursory Analysis of GPS Time Series for Seismic Hazard Assessment. Pure and Applied Geophysics, 177(1), 509–530. https://doi.org/10.1007/s00024-018-2079-3

Fu, C. C., Lee, L. C., Ouzounov, D., & Jan, J. C. (2020). Earth’s Outgoing Longwave Radiation Variability Prior to M ≥6.0 Earthquakes in the Taiwan Area During 2009–2019. Frontiers in Earth Science, 8(September), 1–15. https://doi.org/10.3389/feart.2020.00364

Fulki, A. (2011). Analisis Parameter Gempa, b-value dan PGA di daerah Papua. In Universitas Islam Negeri Syarif Hidayatullah Jakarta (pp. 1689–1699). https://repository.uinjkt.ac.id/dspace/handle/123456789/1540

Ghamry, E., Mohamed, E. K., Abdalzaher, M. S., Elwekeil, M., Marchetti, D., De Santis, A., Hegy, M., Yoshikawa, A., & Fathy, A. (2021). Integrating Pre-Earthquake Signatures from Different Precursor Tools. IEEE Access, 9, 33268–33283. https://doi.org/10.1109/ACCESS.2021.3060348

Kamişlioǧlu, M., & Kulali, F. (2019). Chaotic analysis of radon gas (222Rn) measurements in Lesvos Island: Detrended Fluctuation Analysis (DFA). 7th International Symposium on Digital Forensics and Security, ISDFS 2019. https://doi.org/10.1109/ISDFS.2019.8757520

Kanata, B., Zubaidah, T., Ramadhani, C., & Irmawati, B. (2014). Changes of the geomagnetic signals linked to Tohoku earthquake on March 11th 2011. International Journal of Technology, 5(3), 251–258. https://doi.org/10.14716/ijtech.v5i3.611

Li, J., Zhang, X., & Tang, J. (2020). Noise suppression for magnetotelluric using variational mode decomposition and detrended fluctuation analysis. Journal of Applied Geophysics, 180, 104127. https://doi.org/10.1016/j.jappgeo.2020.104127

Marchetti, D., De Santis, A., Shen, X., Campuzano, S. A., Perrone, L., Piscini, A., Di Giovambattista, R., Jin, S., Ippolito, A., Cianchini, G., Cesaroni, C., Sabbagh, D., Spogli, L., Zhima, Z., & Huang, J. (2020). Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 Mw = 7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data. Journal of Asian Earth Sciences, 188, 104097. https://doi.org/10.1016/j.jseaes.2019.104097

Mariani, M. C., Asante, P. K., Masum Bhuiyan, M. Al, Beccar-Varela, M. P., Jaroszewicz, S., & Tweneboah, O. K. (2020). Long-Range correlations and characterization of financial and volcanic time series. Mathematics, 8(3), 1–18. https://doi.org/10.3390/math8030441

Mulyana, T. M. S., & Herlina, H. (2020). Penilaian Kelayakan Objek Pupil Dari Frame Citra Mata Pada Aplikasi Pemeriksa Myopia Menggunakan Standar Deviasi. Jurnal Muara Sains, Teknologi, Kedokteran Dan Ilmu Kesehatan, 3(2), 201. https://doi.org/10.24912/jmstkik.v3i2.3448

Nenovski, P., Chamati, M., Villante, U., De Lauretis, M., & Francia, P. (2013). Scaling characteristics of SEGMA magnetic field data around the Mw 6.3 Aquila earthquake. Acta Geophysica, 61(2), 311–337. https://doi.org/10.2478/s11600-012-0081-1

Peng, C. K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 5(1), 82–87. https://doi.org/10.1063/1.166141

Ridwan, M., Yatini, Y., & Pramono, S. (2021). Mapping of Potential Damages Area in Lombok Island Base on Microtremor Data. Jurnal Pendidikan Fisika Indonesia, 17(1), 49–59. https://doi.org/10.15294/jpfi.v17i1.27028

Sahoo, S. K., Katlamudi, M., Barman, C., & Lakshmi, G. U. (2020). Identification of earthquake precursors in soil radon-222 data of Kutch, Gujarat, India using empirical mode decomposition based Hilbert Huang Transform. Journal of Environmental Radioactivity, 222(May), 106353. https://doi.org/10.1016/j.jenvrad.2020.106353

Scholz, C. H. (2010). Large earthquake triggering, clustering, and the synchronization of faults. Bulletin of the Seismological Society of America, 100(3), 901–909. https://doi.org/10.1785/0120090309

Sekertekin, A., Inyurt, S., & Yaprak, S. (2020). Pre-seismic ionospheric anomalies and spatio-temporal analyses of MODIS Land surface temperature and aerosols associated with Sep, 24 2013 Pakistan Earthquake. Journal of Atmospheric and Solar-Terrestrial Physics, 200, 105218. https://doi.org/10.1016/j.jastp.2020.105218

Şentürk, E., Livaoǧlu, H., & Çepni, M. S. (2019). A Comprehensive Analysis of Ionospheric Anomalies before the M w 7·1 Van Earthquake on 23 October 2011. Journal of Navigation, 72(3), 702–720. https://doi.org/10.1017/S0373463318000826

Shah, M., Qureshi, R. U., Khan, N. G., Ehsan, M., & Yan, J. (2021). Artificial Neural Network based thermal anomalies associated with earthquakes in Pakistan from MODIS LST. Journal of Atmospheric and Solar-Terrestrial Physics, 215(January), 105568. https://doi.org/10.1016/j.jastp.2021.105568

Shah, M., Tariq, M. A., & Naqvi, N. A. (2019). Atmospheric anomalies associated with Mw>6.0 earthquakes in Pakistan and Iran during 2010–2017. Journal of Atmospheric and Solar-Terrestrial Physics, 191. https://doi.org/10.1016/j.jastp.2019.06.003

Sihombing, P. R., Suryadiningrat, S., Sunarjo, D. A., & Yuda, Y. P. A. C. (2023). Identifikasi Data Outlier (Pencilan) dan Kenormalan Data Pada Data Univariat serta Alternatif Penyelesaiannya. Jurnal Ekonomi Dan Statistik Indonesia, 2(3), 307–316. https://doi.org/10.11594/jesi.02.03.07

Simanjuntak, Y., Sampurno, J., & Hwan, A. (2013). Aplikasi Metode Detrended Fluctuation Analysis (DFA) pada Dinamika Curah Hujan di Kalimantan Barat. Prisma Fisika, I(2), 97–103. https://doi.org/10.26418/pf.v1i2.3620

Skordas, E. S., Christopoulos, S. R. G., & Sarlis, N. V. (2020). Detrended fluctuation analysis of seismicity and order parameter fluctuations before the M7.1 Ridgecrest earthquake. Natural Hazards, 100(2), 697–711. https://doi.org/10.1007/s11069-019-03834-7

Song, R., Hattori, K., Zhang, X., & Sanaka, S. (2020). Seismic-ionospheric effects prior to four earthquakes in Indonesia detected by the China seismo-electromagnetic satellite. Journal of Atmospheric and Solar-Terrestrial Physics, 205(May), 105291. https://doi.org/10.1016/j.jastp.2020.105291

Tariq, M. A., Shah, M., Hernández-Pajares, M., & Iqbal, T. (2019). Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015–2017. Advances in Space Research, 63(7), 2088–2099. https://doi.org/10.1016/j.asr.2018.12.028

Telesca, L., & Hattori, K. (2007). Analysis of non-uniform scaling features in Ultra Low Frequency geomagnetic signals and correlation with seismicity. ICSPC 2007 Proceedings - 2007 IEEE International Conference on Signal Processing and Communications, November, 488–491. https://doi.org/10.1109/ICSPC.2007.4728362

Telesca, L., & Lovallo, M. (2009). Non-uniform scaling features in central Italy seismicity: A non-linear approach in investigating seismic patterns and detection of possible earthquake precursors. Geophysical Research Letters, 36(1), 1–4. https://doi.org/10.1029/2008GL036247

Timor, A. R., Andre, H., & Hazmi, A. (2016). Analisis Gelombang Elektromagnetik dan Seismik yang Ditimbulkan oleh Gejala Gempa. Jurnal Nasional Teknik Elektro, 5(3), 315. https://doi.org/10.25077/jnte.v5n3.297.2016

Toulkeridis, T., Porras, L., Tierra, A., Toulkeridis-Estrella, K., Cisneros, D., Luna, M., Carrión, J. L., Herrera, M., Murillo, A., Perez Salinas, J. C., Tapia, S., Fuertes, W., & Salazar, R. (2019). Two independent real-time precursors of the 7.8 Mw earthquake in Ecuador based on radioactive and geodetic processes—Powerful tools for an early warning system. Journal of Geodynamics, 126, 12–22. https://doi.org/10.1016/j.jog.2019.03.003

Walfish, S. (2006). A review of statistical outlier methods. Pharmaceutical Technology, 30(11), 82–86 Retrieved from. https://www.statisticaloutsourcingservices.com/Outlier2.pdf

Wang, C., Wang, X., Xiu, W., Zhang, B., Zhang, G., & Liu, P. (2020). Characteristics of the seismogenic faults in the 2018 Lombok, Indonesia, earthquake sequence as revealed by inversion of InSAR measurements. Seismological Research Letters, 91(2), 733–744. https://doi.org/10.1785/0220190002

Xiong, P., Tong, L., Zhang, K., Shen, X., Battiston, R., Ouzounov, D., Iuppa, R., Crookes, D., Long, C., & Zhou, H. (2021). Towards advancing the earthquake forecasting by machine learning of satellite data. Science of the Total Environment, 771, 145256. https://doi.org/10.1016/j.scitotenv.2021.145256

Yang, X., Singh, S. C., & Tripathi, A. (2020). Did the Flores backarc thrust rupture offshore during the 2018 Lombok earthquake sequence in Indonesia? Geophysical Journal International, 221(2), 758–768. https://doi.org/10.1093/gji/ggaa018

Zubaidah, T., Korte, M., Mandea, M., Quesnel, Y., & Kanata, B. (2010). Geomagnetic field anomalies over the Lombok Island region: An attempt to understand the local tectonic changes. International Journal of Earth Sciences, 99(5). https://doi.org/10.1007/s00531-009-0450-4

Author Biographies

Bulkis Kanata, University of Mataram

Rosmaliati, University of Mataram

Teti Zubaidah, University of Mataram

Made Sutha Yadnya, University of Mataram

Abdullah Zainuddin, University of Mataram

Dwi Ratnasari, University of Mataram

Nur Fitratunnisa, University of Mataram

Muhammad Fajrin Akbar, University of Mataram

License

Copyright (c) 2024 Bulkis Kanata, Rosmaliati, Teti Zubaidah, Made Sutha Yadnya, Abdullah Zainuddin, Dwi Ratnasari, Nur Fitratunnisa, Muhammad Fajrin Akbar

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).