Biodegradable Plastic Synthesis Based on Kluwih Seeds (Artocarpus camansi) and Chitosan with the Addition of Glycerol

Authors

Fadlan Hidayat , Rita Sunartaty , Ibrahim , Safiah , Liya Fitriyana

DOI:

10.29303/jppipa.v9i12.6352

Published:

2023-12-20

Issue:

Vol. 9 No. 12 (2023): December

Keywords:

Biodegradability, Chitosan, Glycerol, Kluwih, Starch

Research Articles

Downloads

How to Cite

Hidayat, F. ., Sunartaty, R. ., Ibrahim, Safiah, & Fitriyana, L. . (2023). Biodegradable Plastic Synthesis Based on Kluwih Seeds (Artocarpus camansi) and Chitosan with the Addition of Glycerol. Jurnal Penelitian Pendidikan IPA, 9(12), 11689–11696. https://doi.org/10.29303/jppipa.v9i12.6352

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The natural resources of agricultural products have the potential to be raw material for making biodegradable plastic, one of which is starch from kluwih seeds (Artocarpus camansi). This study examines the potential of kluwih seed starch as a basic material for making biodegradable plastic. This research method is experimental, the raw material for making biodegradable plastic is the kluwih seed starch originating from Aceh Besar Regency, Aceh Province. Other additives used are chitosan as reinforcement and glycerol as plasticizers. The analysis is carried out, namely mechanical properties, morphology, thermal, functional groups, water absorption and degradation analysis. The results of the analysis of this study show that the kluwih seed starch functions as a basic material for making biodegradable plastic. As chitosan concentration increases, the resulting tensile strength increases with results obtained around 119.17-166.67 kgf/mm2, while the percentage of elongation is lower the results obtained are 6.82-11.15%. The morphological analysis shows the biodegrable plastic produced has a compact and homogeneous structure. The thermal analysis shows a good thermal stability to ranging from 180 to 370 oC. The results of the biodegradable plastic FTIR show wave numbers 1662.64–1049 cm-1. Water absorption analysis is obtained around 7.658-12.068%, a decrease in water absorption is influenced by the addition of chitosan concentration. Biodegradable paltic planted in the soil containing EM4 degraded for 3 days.

References

Adilah, A. N., Jamilah, B., Noranizan, M. A., & Hanani, Z. A. N. (2018). Utilization of Mango Peel Extracts on the Biodegradable Films for Active Packaging. Food Packaging and Shelf Life, 16(November 2017), 1–7. https://doi.org/10.1016/j.fpsl.2018.01.006

ASTM. (2009). ASTM D882-02(Test Method): Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Retrieved from https://standards.iteh.ai/catalog/standards/astm/203f8b88-6e4a-44c6-a611-37a9d5931aa0/astm-d882-02

Bartolucci, F. L. L., Costa, S. C. G., Mele, A. F. P., & Mulone, M. M. V. (2023). Chemical Physical Characterization of Bio Based Biodegradable Plastics in View of Identifying Suitable Recycling/Recovery Strategies and Numerical Modeling of PLA Pyrolysis. Waste and Biomass Valorization, 0123456789. https://doi.org/10.1007/s12649-023-02159-8

Briassoulis, D., & Mistriotis, A. (2018). Key Parameters in Testing Biodegradation of Bio-Based Materials in Soil. Chemosphere, 207, 18-26. https://doi.org/10.1016/j.chemosphere.2018.05.024

Briassoulis, D., Mistriotis, A., Mortier, N., & Tosin, M. (2020). A Horizontal Test Method for Biodegradation in Soil of Bio-Based and Conventional Plastics and Lubricants. Journal of Cleaner Production, 242, 118392. https://doi.org/10.1016/j.jclepro.2019.118392

Cahyaningtyas, A. A., Ermawati, R., Supeni, G., Syamani, F. A., Masruchin, N., Kusumaningrum, W. B., Pramasari, D. A., Darmawan, T., Ismadi, I., Wibowo, E. S., Triwibowo, D., & Kusumah, S. S. (2019). Modifikasi dan Karakterisasi Pati Batang Kelapa Sawit Secara Hidrolisis sebagai Bahan Baku Bioplastik. Jurnal Kimia dan Kemasan, 41(1), 37–44. https://doi.org/10.24817/jkk.v41i1.4623

González, K., Retegi, A., González, A., Eceiza, A., & Gabilondo, N. (2015). Starch and Cellulose Nanocrystals Together into Thermoplastic Starch Bionanocomposites. Carbohydrate Polymers, 117, 83–90. https://doi.org/10.1016/j.carbpol.2014.09.055

Haghighi, H., Biard, S., Bigi, F., de Leo, R., Bedin, E., Pfeifer, F., Siesler, H. W., Licciardello, F., & Pulvirenti, A. (2019). Comprehensive Characterization of Active Chitosan-Gelatin Blend Films Enriched with Different Essential Oils. Food Hydrocolloids, 95(April), 33–42. https://doi.org/10.1016/j.foodhyd.2019.04.019

Hidayat, F., Indarti, E., Arahman, N., & Rahmi. (2023). The Effects of Sodium Metabisulfite (Na2S2O5) on the Physicochemical Properties of Breadnut Seeds (Artocarpus camansi). IOP Conference Series: Earth and Environmental Science, 1182(1), 012013. https://doi.org/10.1088/1755-1315/1182/1/012013

Hidayat, F., Syaubari, S., & Salima, R. (2020). Pemanfaatan Pati Tapioka dan Kitosan dalam Pembuatan Plastik Biodegradable dengan Penambahan Gliserol sebagai Plasticizer. Jurnal Litbang Industri, 10(1), 33. https://doi.org/10.24960/jli.v10i1.5970.33-38

Hosseini, S. F., Rezaei, M., Zandi, M., & Ghavi, F. (2013). Preparation and Functional Properties of Fish Gelatin-Chitosan Blend Edible Films. Food Chemistry, 136(3–4), 1490–1495. https://doi.org/10.1016/j.foodchem.2012.09.081

Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., Li, S., Luo, Q., Li, M., Liu, X., Chen, A., Wang, Z., & Zhang, Z. (2020). Preparation and Characterization of Indicator Films from Carboxymethyl-Cellulose/Starch and Purple Sweet Potato (Ipomoea batatas (L.) lam) Anthocyanins for Monitoring Fish Freshness. International Journal of Biological Macromolecules, 143, 359–372. https://doi.org/10.1016/j.ijbiomac.2019.12.024

Jimenez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2013). Phase Transitions in Starch Based Films Containing Fatty Acids. Effect on Water Sorption and Mechanical Behaviour. Food Hydrocolloids, 30(1), 408–418. https://doi.org/10.1016/j.foodhyd.2012.07.007

Kakaei, S., & Shahbazi, Y. (2016). Effect of Chitosan-Gelatin Film Incorporated with Ethanolic Red Grape Seed Extract and Ziziphora Clinopodioides Essential Oil on Survival of Listeria Monocytogenes and Chemical, Microbial and Sensory Properties of Minced Trout Fillet. Lwt, 72, 432–438. https://doi.org/10.1016/j.lwt.2016.05.021

Lan, W., Zhang, R., Ji, T., Sameen, D. E., Ahmed, S., Qin, W., Dai, J., He, L., & Liu, Y. (2021). Improving Nisin Production by Encapsulated Lactococcus Lactis with Starch/Carboxymethyl Cellulose Edible Films. Carbohydrate Polymers, 251(April 2020). https://doi.org/10.1016/j.carbpol.2020.117062

Lee, A., & Liew, M. S. (2020). Ecologically Derived Waste Management of Conventional Plastics. Journal of Material Cycles and Waste Management, 22(1). https://doi.org/10.1007/s10163-019-00931-4

Lin, Z., Xia, Y., Yang, G., Chen, J., & Ji, D. (2019). Improved Film Formability of Oxidized Starch-Based Blends Through Controlled Modification with Cellulose Nanocrystals. Industrial Crops and Products, 140(July), 111665. https://doi.org/10.1016/j.indcrop.2019.111665

Maliha, M., Herdman, M., Brammananth, R., McDonald, M., Coppel, R., Werrett, M., Andrews, P., & Batchelor, W. (2020). Bismuth Phosphinate Incorporated Nanocellulose Sheets with Antimicrobial and Barrier Properties for Packaging Applications. Journal of Cleaner Production, 246, 119016. https://doi.org/10.1016/j.jclepro.2019.119016

Peng, Y., & Li, Y. (2014). Combined Effects of Two Kinds of Essential Oils on Physical, Mechanical and Structural Properties of Chitosan Films. Food Hydrocolloids, 36, 287–293. https://doi.org/10.1016/j.foodhyd.2013.10.013

Romainor, A. N. B., Chin, S. F., Pang, S. C., & Bilung, L. M. (2014). Preparation and Characterization of Chitosan Nanoparticles-Doped Cellulose Films with Antimicrobial Property. Journal of Nanomaterials, 2014. https://doi.org/10.1155/2014/710459

Roy, K., Thory, R., Sinhmar, A., Pathera, A. K., & Nain, V. (2019). Development and Characterization of Nano Starch-Based Composite Films from Mung Bean (Vigna radiata). International Journal of Biological Macromolecules, 144, 242–251. https://doi.org/10.1016/j.ijbiomac.2019.12.113

Santana, R. F., Bonomo, R. C. F., Gandolfi, O. R. R., Rodrigues, L. B., Santos, L. S., dos Santos Pires, A. C., de Oliveira, C. P., da Costa Ilhéu Fontan, R., & Veloso, C. M. (2018). Characterization of Starch-Based Bioplastics from Jackfruit Seed Plasticized with Glycerol. Journal of Food Science and Technology, 55(1), 278–286. https://doi.org/10.1007/s13197-017-2936-6

Savadekar, N. R., Karande, V. S., Vigneshwaran, N., Kadam, P. G., & Mhaske, S. T. (2015). Preparation of Cotton Linter Nanowhiskers by High-Pressure Homogenization Process and Its Application in Thermoplastic Starch. Applied Nanoscience (Switzerland), 5(3), 281–290. https://doi.org/10.1007/s13204-014-0316-3

Shahbazi, Y. (2017). The Properties of Chitosan and Gelatin Films Incorporated with Ethanolic Red Grape Seed Extract and Ziziphora Clinopodioides Essential Oil as Biodegradable Materials for Active Food Packaging. International Journal of Biological Macromolecules, 99, 746–753. https://doi.org/10.1016/j.ijbiomac.2017.03.065

Sirisha, S., Chakravartula, N., Vinicius, R., Balestra, F., Mônica, A., Barbosa, Q., José, P., & Dalla, M. (2020). Influence of Pitanga (Eugenia Uniflora L.) Leaf Extract and/or Natamycin on Properties of Cassava Starch/Chitosan Active Films. Food Packaging and Shelf Life, 24(February), 100498. https://doi.org/10.1016/j.fpsl.2020.100498

Soltani, N. S. M., Zerafat, M. M., & Sabbaghi, S. (2018). A Comparative Study of Gelatin and Starch-Based Nano-Composite Films Modified by Nano-Cellulose and Chitosan for Food Packaging Applications. Carbohydrate Polymers, 189(September 2017), 48–55. https://doi.org/10.1016/j.carbpol.2018.02.012

Tavassoli-Kafrani, E., Shekarchizadeh, H., & Masoudpour-Behabadi, M. (2015). Development of Edible Films and Coatings from Alginates and Carrageenans. Carbohydrate Polymers, 137, 360–374. https://doi.org/10.1016/j.carbpol.2015.10.074

Triawan, F., Nandiyanto, A. B. D., Suryani, I. O., Fiandini, M., & Budiman, B. A. (2020). The Influence of Turmeric Microparticles Amount on the Mechanical and Biodegradation Properties of Cornstarch-Based Bioplastic Material: from Bioplastic Literature Review to Experiments. Materials Physics and Mechanics, 46(1), 99–114. https://doi.org/10.18149/MPM.4612020_10

Wu, J., Liu, H., Ge, S., Wang, S., Qin, Z., Chen, L., Zheng, Q., Liu, Q., & Zhang, Q. (2015). The Preparation, Characterization, Antimicrobial Stability and Invitro Release Evaluation of Fish Gelatin Films Incorporated with Cinnamon Essential Oil Nanoliposomes. Food Hydrocolloids, 43, 427–435. https://doi.org/10.1016/j.foodhyd.2014.06.017

Yupa, N. P., Sunardi, S., & Irawati, U. (2021). Synthesis and Characterization of Alginate Based Bioplastic with the Addition of Nanocellulose from Sago Frond as Filler. Jurnal Sains dan Teknologi, 4(1), 30–39. https://doi.org/10.31764/justek.v4i1.4308

Zheng, K., Xiao, S., Li, W., Wang, W., Chen, H., Yang, F., & Qin, C. (2019). Chitosan-Acorn Starch-Eugenol Edible film: Physico-Chemical, Barrier, Antimicrobial, Antioxidant and Structural Properties. International Journal of Biological Macromolecules, 135, 344–352. https://doi.org/10.1016/j.ijbiomac.2019.05.151

Author Biographies

Fadlan Hidayat, Universitas Serambi Mekkah, Jurusan Teknologi Pangan, Banda Aceh, Indonesia.

Rita Sunartaty, Universitas Serambi Mekkah, Jurusan Teknologi Pangan, Banda Aceh, Indonesia

Ibrahim, Universitas Serambi Mekkah, Jurusan Pendikan Biologi, Banda Aceh, Indonesia

Safiah, Sekolah Tinggi Ilmu Ekonomi, Banda Aceh, Indonesia

Liya Fitriyana, Universitas Serambi Mekkah, Jurusan Teknik Industri Pertanian, Banda Aceh, Indonesia

License

Copyright (c) 2023 Fadlan Hidayat, Rita Sunartaty, Ibrahim, Safiah, Liya Fitriyana

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).