Phase Regularization and Additional Potential in Quantum Systems at the Potential Barrier to Maintain Adiabatic Condition
DOI:
10.29303/jppipa.v10i2.6393Published:
2024-02-28Issue:
Vol. 10 No. 2 (2024): FebruaryKeywords:
Additional Potential, Adiabatic, Fast Forward, Phase Regularization, Potential BarrierResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
This research is theoretical research with a literature study that examines methods to maintain characteristics of electrons when moving in a quantum system at the potential barrier. Attempts to maintain the characteristics of electrons in quantum systems are known as adiabatic. The method used in this research is the fast-forward method. This method was first introduced by Masuda and Nakamura in 2010. The fast-forward method is applied to barrier potential in case of electron energy larger and smaller than the potential barrier. This research focuses on preserving the characteristics of electrons by determining the regularization phase and additional potential of the quantum system at the barrier potential. The wave function solution of the system at the potential barrier is approximated by the Schrödinger equation into three regions for each case. The wave function of each region is regularized to be an adiabatic wave function and an additional term in the form of regularization phase (θ) is obtained. Given the regularized Hamiltonian, the additional potential (Ṽ) is obtained. The obtained regularization phase and additional potential ensure the quantum system at the potential barrier is in the same state from the initial state to the final state
References
Abah, O., & Lutz, E. (2018). Performance of Shortcut-to-Adiabaticity Quantum Engines. Physical Review E, 98(3), 032121. https://doi.org/10.1103/PhysRevE.98.032121
Agustin, N. C., Nugroho, C. I. W., & Pratama, M. A. (2019). Koefisien Transmisi Inn (Indium Nitrit) Penghalang Tunggal Hingga Penghalang Tiga dengan Metode Schrodinger. Fkip E-Proceeding, 4(1), 252–257.
Ainayah, N., Setiawan, I., & Hamdani, D. (2022). Methods to Accelerate Equilibrium in Overdamped Brownian Motion. Jurnal Pendidikan Fisika Dan Keilmuan (JPFK), 8(2), 1–11. https://doi.org/http://doi.org/10.25273/jpfk.v8i2.13626
Aini, N. R., Irianto, I. D., Hamid, A. A., & Thompson, B. B. (2020). Sejarah Perkembangan Fisika (Kuantum) dari Klasik hingga Modern. Diktat Kuliah Termodinamika, 4(3)(November), 22–32. https://doi.org/10.13140/RG.2.2.17085.08160
Babajanova, G., Matrasulov, J., & Nakamura, K. (2018). Quantum Gas in the Fast Forward Scheme of Adiabatically Expanding Cavities : Force and Equation of State. Physical Review E 97 , 042104, 042104, 1–10. https://doi.org/10.1103/PhysRevE.97.042104
Benggadinda, A., & Setiawan, I. (2021). Metoda Fast Forward Untuk Mempercepat Dinamika Kuantum Adiabatik Pada Spin Tunggal. JST (Jurnal Sains Dan Teknologi), 10(2), 274–280. https://doi.org/10.23887/jstundiksha.v10i2.39876
Born, M., & Fock, V. (1928). Beweis des Adiabatensatzes. Zeitschrift Fur Physik, 51(3–4), 165–180. https://doi.org/10.1007/BF01343193
Çakmak, B., & Müstecaplıoğlu, Ö. E. (2019). Spin Quantum Heat Engines with Shortcuts to Adiabaticity. Physical Review E, 99(3), 032108. https://doi.org/10.1103/PhysRevE.99.032108
Campo, A. del, Goold, J., & Paternostro, M. (2014). More Bang for Your Buck: Super-Adiabatic Quantum Engines. Scientific Reports, 4(1), 6208. https://doi.org/10.1038/srep06208
Chung, H.-C., MartÃnez-Garaot, S., Chen, X., Muga, J. G., & Tseng, S.-Y. (2019). Shortcuts to Adiabaticity in Optical Waveguides. EPL (Europhysics Letters), 127(3), 34001. https://doi.org/10.1209/0295-5075/127/34001
Deffner, S. (2016). Shortcuts to adiabaticity: Suppression of pair production in driven Dirac dynamics. New Journal of Physics, 18(1). https://doi.org/10.1088/1367-2630/18/1/012001
Dupays, L., Egusquiza, I. L., del Campo, A., & Chenu, A. (2020). Superadiabatic Thermalization of A Quantum Oscillator by Engineered Dephasing. Physical Review Research, 2(3), 033178. https://doi.org/10.1103/PhysRevResearch.2.033178
Elisa, N., Setiawan, I., & Hamdani, D. (2023). Energi Penggerak untuk Mempercepat Kesetimbangan Gerak Brown Teredam Sebagian (Underdamped). Jurnal Inovasi Dan Pembelajaran Fisika, 10(1), 21–33. https://doi.org/10.36706/jipf.v10i1.19240
Elviyanti, I. L., Pratiwi, B. N., & Syukron, A. (2023). Pendekatan Semiklasik untuk Persamaan Schrodinger dengan Potensial Scraf II Trigonometri. Delta Journal of Physics, 1(1), 32–38.
Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., MartÃnez-Garaot, S., & Muga, J. G. (2019). Shortcuts to Adiabaticity: Concepts, Methods, and Applications. Reviews of Modern Physics, 91(4), 045001. https://doi.org/10.1103/RevModPhys.91.045001
Hartmann, A., Mukherjee, V., Niedenzu, W., & Lechner, W. (2020). Many-Body Quantum Heat Engines with Shortcuts to Adiabaticity. Physical Review Research, 2(2), 23145. https://doi.org/10.1103/PhysRevResearch.2.023145
Hutagalung, M., Setiawan, I., & Hamdani, D. (2023). Kajian Literatur Fase Adiabatik untuk mempercepat Dinamika Kuantum Adiabatik pada Osilator Harmonik. Indonesian Journal of Applied Physics, 13(1), 106. https://doi.org/10.13057/ijap.v12i2.65252
Jarzynski, C., Deffner, S., Patra, A., & Subaşl, Y. (2017). Fast Forward to the Classical Adiabatic Invariant. Physical Review E, 95(3), 1–7. https://doi.org/10.1103/PhysRevE.95.032122
Khujakulov, A., & Nakamura, K. (2016). Scheme for Accelerating Quantum Tunneling Dynamics. Physical Review A, 93(2), 1–14. https://doi.org/10.1103/PhysRevA.93.022101
Kiely, A., McGuinness, J. P. L., Muga, J. G., & Ruschhaupt, A. (2015). Fast and Stable Manipulation of A Charged Particle in a Penning Trap. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(7). https://doi.org/10.1088/0953-4075/48/7/075503
Liu, X.-C., & Kong, X.-Y. (2023). Quantum Simulation of the Shortcut to the Adiabatic Passage Using Nuclear Magnetic Resonance. Entropy, 25(7), 1020. https://doi.org/10.3390/e25071020
Masuda, S., & Nakamura, K. (2010). Fast-Forward of Adiabatic Dynamics in Quantum Mechanics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2116), 1135–1154. https://doi.org/10.1098/rspa.2009.0446
Masuda, S., & Nakamura, K. (2022). Fast-Forward Scaling Theory. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2239). https://doi.org/10.1098/rsta.2021.0278
Nakamura, K., Khujakulov, A., Avazbaev, S., & Masuda, S. (2017). Fast forward of Adiabatic Control of Tunneling States. Physical Review A, 95(6), 062108. https://doi.org/10.1103/PhysRevA.95.062108
Nakamura, K., Matrasulov, J., & Izumida, Y. (2020). Fast-Forward Approach to Stochastic Heat Engine. Physical Review E, 102(1), 1–12. https://doi.org/10.1103/PhysRevE.102.012129
Patra, A., & Jarzynski, C. (2021). Semiclassical Fast-Forward Shortcuts to Adiabaticity. Physical Review Research, 3(1). https://doi.org/10.1103/PhysRevResearch.3.013087
Romadani, A., & Rani, E. (2020). Solusi Persamaan Dirac untuk Fermion dengan Model Potensial Penghalang Medan Elektromagnetik. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 17(2), 112. https://doi.org/10.20527/flux.v17i2.8105
Santos, A. C., & Sarandy, M. S. (2018). Generalized Shortcuts to Adiabaticity and Enhanced Robustness Against Decoherence. Journal of Physics A: Mathematical and Theoretical, 51(2), 025301. https://doi.org/10.1088/1751-8121/aa96f1
Setiawan, I. (2019). Dinamika Spin Kuantum Adiabatik Dipercepat pada Model Landau-Zener dan Model Ising. Jurnal Kumparan Fisika, 2(1), 57–64. https://doi.org/10.33369/jkf.2.1.57-64
Setiawan, I., Eka Gunara, B., Masuda, S., & Nakamura, K. (2017). Fast forward of the Adiabatic Spin Dynamics of Entangled States. Physical Review A, 96(5), 1–11. https://doi.org/10.1103/PhysRevA.96.052106
Setiawan, I., Ekawita, R., Sugihakim, R., & Gunara, B. E. (2023). Fast-Forward Adiabatic Quantum Dynamics of XY Spin Model on Three Spin System. Physica Scripta, 98(2), 025405. https://doi.org/10.1088/1402-4896/acb2fe
Setiawan, I., Gunara, B. E., Avazbaev, S., & Nakamura, K. (2019). Fast-forward Approach to Adiabatic Quantum Dynamics of Regular Spin Clusters: Nature of Geometry-Dependent Driving Interactions. Physical Review A, 99(6), 062116. https://doi.org/10.1103/PhysRevA.99.062116
Setiawan, I., Gunara, B. E., & Nakamura, K. (2019). Fast forward of Adiabatic Spin Dynamics : An Application to Quantum Annealing Model in Triangle Spin Systems. Journal of Physics: Conference Series, 1245(1). https://doi.org/10.1088/1742-6596/1245/1/012077
Setiawan, I., Sugihakim, R., Gunara, B. E., Masuda, S., & Nakamura, K. (2023). Fast-Forward Generation of Non-Equilibrium Steady States of a Charged Particle Under the Magnetic Field. Progress of Theoretical and Experimental Physics, 2023(6), 1–12. https://doi.org/10.1093/ptep/ptad067
Setiawan, I., Syarkowi, A., Syatyatuhu, A., & Gunara, B. E. (2021). Driving Energy to Accelerate the Adiabatic Electron Dynamics in Quantum Hall System Driving Energy to Accelerate the Adiabatic Electron Dynamics in Quantum Hall System. Journal of Physics: Conference Series, 1731(1). https://doi.org/10.1088/1742-6596/1731/1/012065
Steckmann, T., Keen, T., Kökcü, E., Kemper, A. F., Dumitrescu, E. F., & Wang, Y. (2023). Mapping the metal-insulator phase diagram by algebraically fast-forwarding dynamics on a cloud quantum computer. Physical Review Research, 5(2), 1–16. https://doi.org/10.1103/PhysRevResearch.5.023198
Sudiarta, I. W. (2019). Mekanika Kuantum. Mataram: CV. Garuda Ilmu
Sugihakim, R., Setiawan, I., & Gunara, B. E. (2021). Fast-Forward of Local-Phased-Regularized Spinor in Massless 2+1-Dimensions Adiabatic Dirac Dynamics. Journal of Physics: Conference Series, 1951(1). https://doi.org/10.1088/1742-6596/1951/1/012068
Taras, A. K., Tuniz, A., Bajwa, M. A., Ng, V., Dawes, J. M., Poulton, C. G., & De Sterke, C. M. (2021). Shortcuts to Adiabaticity in Waveguide Couplers–Theory and Implementation. Advances in Physics: X, 6(1). https://doi.org/10.1080/23746149.2021.1894978
Villazon, T., Polkovnikov, A., & Chandran, A. (2019). Swift Heat Transfer by Fast-Forward Driving in Open Quantum Systems. Physical Review A, 012126(July), 1–15. https://doi.org/10.1103/PhysRevA.100.012126
Wardani, I., Aisyah, N. D., & Supardi, A. (2020). Approximation Rectangular Function as Potential Barrier. Journal of Physics: Conference Series, 1445(1). https://doi.org/10.1088/1742-6596/1445/1/012009
Wen, Z., & Wu, D. (2020). Ferroelectric Tunnel Junctions: Modulations on the Potential Barrier. Advanced Materials, 32(27), 1–19. https://doi.org/10.1002/adma.201904123
Yu, X., Zhang, Q., Ban, Y., & Chen, X. (2018). Fast and Robust Control of Two Interacting Spins. Physical Review A, 97(6), 062317. https://doi.org/10.1103/PhysRevA.97.062317
Zettili, N. (2009). Quantum Mechanics: Theory, Analysis, and Applications (2nd ed.). Jacksonville State University, USA: WILEY.
Author Biographies
Anggen Dari, Universitas Bengkulu
Iwan Setiawan, University of Bengkulu
Andik Purwanto, University of Bengkulu
License
Copyright (c) 2024 Anggen Dari
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).