Potential Impact of Anemia on BALB/c Mice Exposed to an Extremely Low Frequency 50 Hz Magnetic Field with an Intensity of 100 μT and 500 μT


Sudarti , Singgih Bektiarso , Revi Restanti






Vol. 10 No. 4 (2024): April


Anemia, ELF Magnetic Field, Erythrocytes, Hematocrit, Hemoglobin

Research Articles


How to Cite

Sudarti, S., Bektiarso, S., & Restanti, R. (2024). Potential Impact of Anemia on BALB/c Mice Exposed to an Extremely Low Frequency 50 Hz Magnetic Field with an Intensity of 100 μT and 500 μT. Jurnal Penelitian Pendidikan IPA, 10(4), 2050–2058. https://doi.org/10.29303/jppipa.v10i4.6501


Download data is not yet available.


Metrics Loading ...


Exposure threshold values (ELF MF) according to WHO, 100 μT for the public and 500 μT for workers, are still being debated. This study examines the potential impact of anemia in BULB/C mice exposed to ELF MF intensities of 100 μT and 500 μT. The research design used a completely randomized design with intensity and duration of exposure to ELF MF as factors. A sample of 60 male Bulb/C mice were divided into 6 groups, 2 groups exposed to ELF MF 100 μT, 2 groups exposed to ELF MF 500 μT, and 2 control groups. Indicators of anemia include the number of erythrocytes, hemoglobin levels and hematocrit using the complete blood count (CBC) method. Two Way Anova analysis (α = 5%), proved that the intensity factor had a significant effect (p < 0.05) on the number of erythrocytes, hemoglobin levels and hematocrit levels, while the length of exposure factor had no effect (p > 0.05). Conclusion: Exposure to ELF MF intensity of 100 μT for 30 days has the potential to cause anemia in BULB/c mice, but there appears to be an adaptive response due to exposure to ELF MF 500 μT


Ahmed, M. H., Ghatge, M. S., & Safo, M. K. (2020). Hemoglobin: Structure, Function and Allostery. Subcell Biochem, 94, 123–163. https://doi.org/10.1007/978-3-030-41769-7

Akin-Osanaiye, B. C., Nok, A. J., Amlabu, E., & Haruna, E. (2015). Assessment of Changed in Serum Haematological Parameters in the Plasmodium berghei Infected Albino Mice Treated with Neem (Azadirachta indica) Extracts. International Journal of Chemical and Biomolecular Science, 1(3), 148–152. Retrieved from http://www.aiscience.org/journal/ijcbshttp://creativecommons.org/licenses/by-nc/4.0/

Barati, M., Darvishi, B., Javidi, M. A., Mohammadian, A., Shariatpanahi, S. P., Eisavand, M. R., & Madjid Ansari, A. (2021). Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis. Cell Proliferation, 54(12), 1–19. https://doi.org/10.1111/cpr.13154

Benković, V., Dikić, D., Grgorinić, T., Mladinić, M., & Željezi, D. (2012). Haematology and blood chemistry changes in mice treated with terbuthylazine and its formulation radazin TZ-50. Bulletin of Environmental Contamination and Toxicology, 89(5), 955–959. https://doi.org/10.1007/s00128-012-0813-6

Buckner, C. A., Buckner, A. L., Koren, S. A., Persinger, M. A., & Lafrenie, R. M. (2015). Inhibition of cancer cell growth by exposure to a specific time-Varying electromagnetic field involves T-Type calcium channels. PLoS ONE, 10(4), 1–16. https://doi.org/10.1371/journal.pone.0124136

Cios, A., Ciepielak, M., Stankiewicz, W., & Szymański, Ł. (2021). The influence of the extremely low frequency electromagnetic field on clear cell renal carcinoma. International Journal of Molecular Sciences, 22(3), 1–12. https://doi.org/10.3390/ijms22031342

Domenica Cappellini, M., & Motta, I. (2015). Anemia in Clinical Practice-Definition and Classification: Does Hemoglobin Change With Aging? Seminars in Hematology, 52(4), 261–269. https://doi.org/10.1053/j.seminhematol.2015.07.006

Douglas, J. W., & Wardrop, K. J. (2010). Schalm’s Veterinary Hematology (6th ed). Wiley-Blackwell.

Fotsing, C. B. K., Pieme, C. A., Nya, P. C. B., Chedjou, J. P., Ashusong, S., Njindam, G., Gatsing, D., Nengom, J. T., Teto, G., Nguemen, C., & Mbacham, W. F. (2021). Haptoglobin Gene Polymorphism among Sickle Cell Patients in West Cameroon: Hematological and Clinical Implications. Advances in Hematology, 2021, 1–8. https://doi.org/10.1155/2021/6939413

Gell, D. A. (2018). Structure and function of haemoglobins. Blood Cells, Molecules, and Diseases, 70, 13–42. https://doi.org/10.1016/j.bcmd.2017.10.006

Juutilainen, J., Herrala, M., Luukkonen, J., Naarala, J., & Hore, P. J. (2018). Magnetocarcinogenesis: Is there a mechanism for carcinogenic effects of weak magnetic fields? Proceedings of the Royal Society B: Biological Sciences, 285(1879). https://doi.org/10.1098/rspb.2018.0590

Kanemaki, M., Shimizu, H. O., Inujima, H., Miyake, T., & Shimizu, K. (2022). Analysis of Red Blood Cell Movement in Whole Blood Exposed to DC and ELF Electric Fields. Bioelectromagnetics, 43(3), 149–159. https://doi.org/10.1002/bem.22395

Karakochuk, C. D., Hess, S. Y., Moorthy, D., Namaste, S., Parker, M. E., Rappaport, A. I., Wegmüller, R., & Dary, O. (2019). Measurement and interpretation of hemoglobin concentration in clinical and field settings: a narrative review. Annals of the New York Academy of Sciences, 1450(1), 126–146. https://doi.org/10.1111/nyas.14003

Karimi, A., Ghadiri Moghaddam, F., & Valipour, M. (2020). Insights in the biology of extremely low-frequency magnetic fields exposure on human health. Molecular Biology Reports, 47(7), 5621–5633. https://doi.org/10.1007/s11033-020-05563-8

Kuhn, V., Diederich, L., Keller, T. C. S., Kramer, C. M., Lückstädt, W., Panknin, C., Suvorava, T., Isakson, B. E., Kelm, M., & Cortese-Krott, M. M. (2017). Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. Antioxidants and Redox Signaling, 26(13), 718–742. https://doi.org/10.1089/ars.2016.6954

Malagoli, C., Malavolti, M., Wise, L. A., Balboni, E., Fabbi, S., Teggi, S., Palazzi, G., Cellini, M., Poli, M., Zanichelli, P., Notari, B., Cherubini, A., Vinceti, M., & Filippini, T. (2023). Residential exposure to magnetic fields from high-voltage power lines and risk of childhood leukemia. Environmental Research, 232, 1–6. https://doi.org/10.1016/j.envres.2023.116320

Masoudi-Khoram, N., & Abdolmaleki, P. (2022). Effects of repeated exposure to 50 Hz electromagnetic field on breast cancer cells. Electromagnetic Biology and Medicine, 41(1), 44–51. https://doi.org/10.1080/15368378.2021.1995872

Meduri, G. U., & Chrousos, G. P. (2020). General Adaptation in Critical Illness: Glucocorticoid Receptor-alpha Master Regulator of Homeostatic Corrections. Frontiers in Endocrinology, 11(April), 1–28. https://doi.org/10.3389/fendo.2020.00161

Nezamtaheri, M. S., Goliaei, B., Shariatpanahi, S. P., & Ansari, A. M. (2022). Differential biological responses of adherent and non-adherent (cancer and non-cancerous) cells to variable extremely low frequency magnetic fields. Scientific Reports, 12(1), 1–19. https://doi.org/10.1038/s41598-022-18210-y

Nguyen, N., & Pandey, M. (2019). Loxoscelism: Cutaneous and Hematologic Manifestations. Advances in Hematology, 2019, 1–6. https://doi.org/10.1155/2019/4091278

Nuriyah, S., & Sudarti. (2022). Effect of Exposure to Magnetic Field ELF (Extremely Low Frequency) 500μT on pH and Physical Quality of Green Cayenne Pepper. Jurnal Penelitian Fisika Dan Terapannya (Jupiter), 3(3), 48–52. https://doi.org/10.31851/jupiter.v3i2.7224

Panagopoulos, D. J., Karabarbounis, A., Yakymenko, I., & Chrousos, G. P. (2021). Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review). International Journal of Oncology, 59(5), 1–16. https://doi.org/10.3892/ijo.2021.5272

Qi, G., Zuo, X., Zhou, L., Aoki, E., Okamula, A., Watanebe, M., Wang, H., Wu, Q., Lu, H., Tuncel, H., Watanabe, H., Zeng, S., & Shimamoto, F. (2015). Effects of extremely low-frequency electromagnetic fields (ELF-EMF) exposure on B6C3F1 mice. Environmental Health and Preventive Medicine, 20(4), 287–293. https://doi.org/10.1007/s12199-015-0463-5

Shahbazi-Gahrouei, D., Razavi, S., Koosha, F., & Salimi, M. (2017). Exposure of Extremely-Low Frequency (ELF) magnetic field may cause human cancer. Acta Medica International, 4(1), 32. https://doi.org/10.5530/ami.2017.4.7

Sitasiwi, A. J., & Isdadiyanto, S. (2017). Kadar Hemoglobin Dan Jumlah Eritrosit Mencit (Mus musculus) Jantan setelah Perlakuan dengan. Buletin Anatomi Dan Fisiologi, 2(2013), 161–167. https://doi.org/10.14710/baf.2.2.2017.161-167

Song, K., Im, S. H., Yoon, Y. J., Kim, H. M., Lee, H. J., & Park, G. S. (2018). A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. PLOS ONE, 13(7), 1–18. https://doi.org/10.1371/journal.pone.0199753

Sudarti, Permatasari, E., Ratnasari, I., & Laili, S. N. (2022). Physical Quality of Cow’s Milk by Exposure to Magnetic Fields Extremely Low Frequency (ELF) 300 μT and 500 μT by inhibiting Salmonella and Escherichia Coli Growth. Indonesian Review of Physics, 5(2), 73–79. https://doi.org/10.12928/irip.v5i2.5064

Sudarti, Qumairoh, U., & Prihandono, T. (2022). The effectiveness of exposure to magnetic fields of extremely low frequency 300T and 500T in inhibiting the proliferation of pathogenic bacteria to increase physical resistance of vannamei shrimp. The 1st International Conference Science Physics and Education 2021 (ICSPE 2021), 2165(2022), 1–12. https://doi.org/10.1088/1742-6596/2165/1/012038

Sudarti, S., Hariyati, Y., Sari, A. B. T., Sumardi, S., & Muldayani, W. (2022). Fermentation Process of Dry Cocoa Beans through Extremely Low Frequency (ELF) Magnetic Field Exposure. Jurnal Penelitian Pendidikan IPA, 8(2), 584–591. https://doi.org/10.29303/jppipa.v8i2.1356

Sudarti, S., Nur, S. U. K., Permatasari, E., Dewi, N. M., & Laili, S. N. (2022). Analysis of Physical Resistance of Apple Tomatoes After Exposed to A Magnetic Field Extremely Low Frequency (ELF) Intensity 600 µT and 1000 µT. Jurnal Penelitian Pendidikan IPA, 8(6), 2872–2878. https://doi.org/10.29303/jppipa.v8i6.2306

Sudarti, S., Nuraini, L., Saleh, T. A., & Prihandono, T. (2018). The Analysis of Extremely Low Frequency (ELF) Electric and Magnetic Field Exposure Biological Effects around Medical Equipments. International Journal of Advanced Engineering Research and Science, 5(7), 289–296. https://doi.org/10.22161/ijaers.5.7.37

Sudarti, S., Permatasari, E., Ningtyias, F. W., Mina, N. M., & Laksmiari, K. (2022). Analysis of Vitamin C Resistance in Red Grapes (Vitis vinifera) After Exposure to Extremely Low Frequency (ELF) Magnetic Fields Intensity 700 uT and 900 uT. Jurnal Penelitian Pendidikan IPA, 8(2), 620–626. https://doi.org/10.29303/jppipa.v8i2.1386

Sudarti, S., Permatasari, E., Sumardi, S., Muldayani, W., Utoyo, E. B., & Prihatin, W. N. (2023). Extremely Low Frequency Electromagnetic Field Radiation (50 Hz, 200 µT & 300 µT) to Increase Edamame Productivity and Safety Risks to Health. Jurnal Penelitian Pendidikan IPA, 9(8), 5979–5986. https://doi.org/10.29303/jppipa.v9i8.2494

Thiagarajan, P., Parker, C. J., & Prchal, J. T. (2021). How Do Red Blood Cells Die? Frontiers in Physiology, 12, 8–10. https://doi.org/10.3389/fphys.2021.655393

Wang, M. H., Chen, K. W., Ni, D. X., Fang, H. J., Jang, L. S., & Chen, C. H. (2021). Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer. Electromagnetic Biology and Medicine, 40(3), 384–392. https://doi.org/10.1080/15368378.2021.1891093

Wang, Y., Liu, X., Zhang, Y., Wan, B., Zhang, J., He, W., Hu, D., Yang, Y., Lai, J., He, M., & Chen, C. (2019). Exposure to a 50 Hz magnetic field at 100 μT exerts no DNA damage in cardiomyocytes. Biology Open, 8(8), 1–10. https://doi.org/10.1242/bio.041293

WHO. (2007). Environmental Health Criteria 238:Extremely Low Frequency Fields. WHO Press.

Wu, X., Du, J., Song, W., Cao, M., Chen, S., & Xia, R. (2018). Weak power frequency magnetic fields induce microtubule cytoskeleton reorganization depending on the epidermal growth factor receptor and the calcium related signaling. PLOS ONE, 13(10), 1–27. https://doi.org/10.1371/journal.pone.0205569

Zhang, Y., Wang, L., Dey, S., Alnaeeli, M., Suresh, S., Rogers, H., Teng, R., & Noguchi, C. T. (2014). Erythropoietin action in stress response, tissue maintenance and metabolism. International Journal of Molecular Sciences, 15(6), 1–10. https://doi.org/10.3390/ijms150610296

Zhou, L., Wan, B., Liu, X., Zhang, Y., Lai, J., Ruan, G., He, M., Chen, C., & Wang, D. W. (2016). The effects of a 50-Hz magnetic field on the cardiovascular system in rats. Journal of Radiation Research, 57(6), 627–636. https://doi.org/10.1093/jrr/rrw090

Author Biographies

Sudarti, Universitas Jember

Singgih Bektiarso, Universitas Jember

Revi Restanti, Universitas Jember


Copyright (c) 2024 Sudarti, Singgih Bektiarso, Revi Restanti

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).