Green Synthesis Silver Nanoparticles Using Sembung (Blumea balsamifera) Leaf Extract as an Antibacterial and Antioxidant
DOI:
10.29303/jppipa.v9i12.6609Published:
2023-12-20Issue:
Vol. 9 No. 12 (2023): DecemberKeywords:
Antibacterial, Antioxidant, Green synthesis, Sembung leaves, Silver nanoparticlesResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Silver Nanoparticles essentially focuses on the synthesis of nano-sized particles produced through chemical, physical and biological processes, which contribute significantly to the control of plant and animal diseases and have shown considerable promise in improving the quality of living conditions and human health. Currently, silver nanoparticles (AgNP) have shown their potential as an alternative antibacterial and antioxidant agent in many studies. The method for making silver nanoparticles, namely Green synthesis, involves the use of plants for the synthesis process of various types of nanoparticles. Green synthesis has the advantages, namely that the method is simple, environmentally friendly, non-polluting, antitoxic and cost-effective. The aim of this research is to determine the antibacterial and antioxidant activity of AgNPs. In this research, the nanoparticle solution was visually determined by the yellow-brown color change. In the spectrophotometer absorption spectrum appears at a wavelength of 425 nm. The results of determining the size distribution of silver nanoparticles using PSA show that the particle size distribution obtained has an average value of 40.5 nm and 59.6 nm for silver nanoparticles for AgNO3 concentrations of 1 mM and 2 mM, respectively. FTIR measurements are used to determine the presence of bioactive molecules that may be responsible for the stabilization that acts as a capping agent. Absorption spiked at 3.280; 2.919; 1.583; 1.379; 1.239 and 1.068 cm−1 were determined for sembung leaf extract, while silver nanoparticles showed an absorption spike at 3.368; 2.850; 1.594; 1.369; 1.244 and 1.108 cm−1. The results of XRD analysis of AgNP show that it has been successfully synthesized which can be seen from the formation of a narrow peak indicating the crystalline nature of the nanoparticles formed. The results of TEM analysis of AgNPs in this study are mixed shapes such as spherical, hexagonal and triangular shapes of silver nanoparticles. The antibacterial activity test of silver nanoparticles with sembung leaf extract with varying concentrations of AgNO3 solution was successful as indicated by the formation of an inhibition zone for Eschericia coli and Staphylococcus aureus bacteria. The results show that the antioxidant activity of AgNPs shows that the percentage of inhibition increases as the concentration of AgNPs increases from 100 to 500 ppm and ascorbic acid increases from 1 to 5 ppm.
References
Ahmed, M. J., Murtaza, G., Rashid, F., & Iqbal, J. (2019). Eco-Friendly Green Synthesis of Silver Nanoparticles and Their Potential Applications as Antioxidant and Anticancer Agents. Drug Development and Industrial Pharmacy, 45(10), 1682–1694. https://doi.org/10.1080/03639045.2019.1656224
Alhumaydhi, F. A. (2022). Green Synthesis of Gold Nanoparticles Using Extract of Pistacia chinensis and Their in Vitro and in Vivo Biological Activities. Journal of Nanomaterials, 2022(7), 1-11. https://doi.org/10.1155/2022/5544475
Arya, A., & Chundawat, T. S. (2020). Metal Nanoparticles from Algae: A Green Approach for the Synthesis, Characterization and Their Biological Activity. Nanoscience & Nanotechnology-Asia, 10(3), 185–202. https://doi.org/10.2174/2210681209666181212153701
Bakshi, M., Ghosh, S., & Chaudhuri, P. (2015). Green Synthesis, Characterization, and Antimicrobial Potential of Sliver Nanoparticles Using Three Mangrove Plants from Indian Sundarban. BioNanoScience, 5, 162-170. https://doi.org/10.1007/s12668-015-0175-8
Balashanmugam, M., Cheong, Y. S., Hounslow, M. J., & Salman, A. D. (2015). Semi-Solid Paste Binder Dispersion in a Moving Powder Bed. Procedia Engineering, 102, 626-633. https://doi.org/10.1016/j.proeng.2015.01.151
Berridge, M. V., Herst, P. M., & Tan, A. S. (2005). Tetrazolium Dyes as Tools in Cell Biology: New Insights into Their Cellular Reduction. Biotechnology Annual Review, 11, 127-152. https://doi.org/10.1016/S1387-2656(05)11004-7
Bhuvaneswari, R., Xavier, R. J., & Arumugam, M. (2017). Facile Synthesis of Multifunctional Silver Nanoparticles Using Mangrove Plant Excoecaria agallocha L. for Its Antibacterial, Antioxidant and Cytotoxic Effects. Journal of Parasitic Diseases, 41, 180–187. https://doi.org/10.1007/s12639-016-0773-6
Castro-aceituno, V., Ahn, S., Yesmin, S., & Singh, P. (2016). Anticancer Activity of Silver Nanoparticles from Panax Ginseng Fresh Leaves in Human Cancer Cells. Biomedicine & Pharmacotherapy, 84(1), 158–165. https://doi.org/10.1016/j.biopha.2016.09.016
Chaloupka, K., Malam, Y., & Seifalian, A. M. (2010). Nanosilver as a New Generation of Nanoproduct in Biomedical Applications. Trends in Biotechnology, 28(11), 580–588. https://doi.org/10.1016/j.tibtech.2010.07.006
Das, C. A., Kumar, V. G., Dhas, T. S., Karthick, V., Govindaraju, K., Joselin, J. M., & Baalamurugan, J. (2020). Antibacterial Activity of Silver Nanoparticles (Biosynthesis): A Short Review on Recent Advances. Biocatalysis and Agricultural Biotechnology, 27, 101593. https://doi.org/10.1016/j.bcab.2020.101593
Fazilatun, N., Nornisah, M., & Zhari, I. (2005). Superoxide Radical Scavenging Properties of Extracts and Flavonoids Isolated from the Leaves of Blumea balsamifera. Pharmaceutical Biology, 43(1), 15-20. https://doi.org/10.1080/13880200590903264
Guidelli, E. J., Ramos, A. P., Zaniquelli, M. E. D., & Baffa, O. (2011). Green Synthesis of Colloidal Silver Nanoparticles Using Natural Rubber Latex Extracted from Hevea brasiliensis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 82(1), 140–145. https://doi.org/10.1016/j.saa.2011.07.024
Hussain, I., Singh, N. B. A., Singh, H., & Singh, S. C. (2016). Green Synthesis of Nanoparticles and Its Potential Application. Biotechnology Letters, 38(4), 545–560. https://doi.org/10.1007/s10529-015-2026-7
Hussain, Z., Abourehab, M. A., Khan, S., & Thu, H. E. (2020). Silver Nanoparticles: A Promising Nanoplatform for Targeted Delivery of Therapeutics and Optimized Therapeutic Efficacy. In Metal Nanoparticles for Drug Delivery and Diagnostic Applications (pp. 141–173). Amsterdam: Elsevier.
Isaac, R. S. R., Sakthivel, G., & Murthy, C. (2013). Green Synthesis of Gold and Silver Nanoparticles Using Averrhoa Bilimbi Fruit Extract. Journal of Nanotechnology, 2013, 1-6. https://doi.org/10.1155/2013/906592
Javed, R., Zia, M., Naz, S., Aisida, S. O., & Ao, Q. (2020). Role of Capping Agents in the Application of Nanoparticles in Biomedicine and Environmental Remediation: Recent Trends and Future Prospects. Journal of Nanobiotechnology, 18(1), 172. https://doi.org/10.1186/s12951-020-00704-4
Kumar, M. K., Sinha, M., Mandal, B. K., Ghosh, A. R., Siva, K. K., & Reddy, S. P. (2012). Green Synthesis of Silver Nanoparticles Using Terminalia chebula Extract at Room Temperature and Their Antimicrobial Studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 228–233. https://doi.org/10.1016/j.saa.2012.02.001
Labulo, A. H., David, O. A., & Terna, A. D. (2022). Green Synthesis and Characterization of Silver Nanoparticles Using Morinda lucida Leaf Extract and Evaluation of Its Antioxidant and Antimicrobial Activity. Chemical Papers, 76, 7313–7325. https://doi.org/10.1007/s11696-022-02392-w
Liu, X., Lee, P. Y., Ho, C. M., Lui, V. C., Chen, Y., Che, C. M., Tam, P. K., & Wong, K. K. (2010). Silver Nanoparticles Mediate Differential Responses in Keratinocytes and Fibroblasts during Skin Wound Healing. ChemMedChem, 5(3), 468-475. https://doi.org/10.1002/cmdc.200900502
Ma, J., Ren, Q., Dong, D., Shi, B. Z., Zhang, J., Jin, D. Q., Xu, J., Ohizumi, Y., Lee, D., & Guo, Y. (2018). No Inhibitory Constituents as Potential Anti-Neuroinflammatory Agents for AD from Blumea balsamifera. Bioorganic Chemistry, 76, 449-457. https://doi.org/10.1016/j.bioorg.2017.12.008
Mohammed, A. E., Al-Qahtani, A., Al-Mutairi, A., Al-Shamri, B., & Aabed, K. (2018). Antibacterial and Cytotoxic Potential of Biosynthesized Silver Nanoparticles by Some Plant Extracts. Nanomaterials, 8(6), 382. https://doi.org/10.3390/nano8060382
Moorthy, K., Chang, K. C., Yu, P. J., Wu, W. J., Liao, M. Y., & Huang, H. C. (2022). Synergistic Actions of Phytonutrient Capped Nanosilver as a Novel Broad-Spectrum Antimicrobial Agent: Unveiling the Antibacterial Effectiveness and Bactericidal Mechanism. New Journal of Chemistry, 46(32), 15301–15312. https://doi.org/10.1039/D2NJ02469A
Nagaich, U., Gulati, N., & Chauhan, S. (2016). Antioxidant and Antibacterial Potential of Silvernanoparticles: Biogenic Synthesis Utilizing Apple Extract. Journal of Pharmaceutics, 2016(6), 1-8. https://doi.org/10.1155/2016/7141523
Nessa, F., Ismail, Z., Mohamed, N., & Haris, M. R. H. M. (2004). Free Radical-Scavenging Activity of Organic Extracts and of Pure Flavonoids of Blumea balsamifera DC Leaves. Food Chemistry, 88(2), 243-252. https://doi.org/10.1016/j.foodchem.2004.01.041
Nguyen, D. D., & Lai, J-Y. (2022). Synthesis, Bioactive Properties, and Biomedical Applications of Intrinsically Therapeutic Nanoparticles for Disease Treatment. Chemical Engineering Journal, 435(19), 134970. https://doi.org/10.1016/j.cej.2022.134970
Nguyen, M. T. T., Awale, S., Tezuka, Y., Le Tran, Q., Watanabe, H., & Kadota, S. (2004). Xanthine Oxidase Inhibitory Activity of Vietnamese Medicinal Plants. Biol. Pharm. Bull. https://doi.org/10.1248/bpb.27.1414
Nikmatin, S., Maddu, A., Purwanto, S., Mandang, T., & Purwanto, A. (2011). Analisa Struktur Mikro Pemanfaatan Limbah Kulit Rotan Menjadi Nanopartikel Selulosa sebagai Pengganti Serat Sintetis. Scientific Repository, IPB University. Retrieved from https://repository.ipb.ac.id/handle/123456789/76355
Norikura, T., Kojima-Yuasa, A., Shimizu, M., Huang, X., Xu, S., Kametani, S., Rho, S. N., Kennedy, D. O., & Matsui-Yuasa, I. (2008). Anticancer Activities and Mechanisms of Blumea balsamifera Extract in Hepatocellular Carcinoma Cells. The American Journal of Chinese Medicine, 36(2), 411-424. https://doi.org/10.1142/S0192415X08005862
Pandit, C., Roy, A., Ghotekar, S., Khusro, A., Islam, M. N., Emran, T. B., Lam, S. E., Khandaker, M. U., & Bradley, D. A. (2022). Biological Agents for Synthesis of Nanoparticles and Their Applications. Journal of King Saud University-Science, 34(3), 101869. https://doi.org/10.1016/j.jksus.2022.101869
Pang, Y., Wang, D., Fan, Z., Chen, X., Yu, F., Hu, X., Wang, K., & Yuan, L. (2014). Blumea balsamifera- A Phytochemical and Pharmacological Review. Molecules, 19(7), 9453-9477. https://doi.org/10.3390/molecules19079453
Pang, Y., Zhang, Y., Huang, L., Xu, K., Wang, D., Wang, L., Guan, Y., Zhang, F., Yu, Z., & Chen, X. X. (2017). Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L.) DC. on Skin Wound in Rats. International Journal of Molecular Sciences, 18(12), 2766. https://doi.org/10.3390/ijms18122766
Preetha, D., Prachi, K., Chirom, A., & Arun, R. (2013). Synthesis and Characterization of Silver Nanoparticles Using Cannonball Leaves and Their Cytotoxic Activity against MCF-7 Cell Line. J. Nanotechnol, 5. https://doi.org/10.1155/2013/598328
Ragasa, C. Y., Co, A. L. K. C., & Rideout, J. A. (2005). Antifungal Metabolites from Blumea balsamifera. Natural Product Research, 19(3), 231-237. https://doi.org/10.1080/14786410410001709773
Ramamurthy, C., Sampath, K., Arunkumar, P., Kumar, M. S., Sujatha, V., Premkumar, K., & Thirunavukkarasu, C. (2013). Green Synthesis and Characterization of Selenium Nanoparticles and Its Augmented Cytotoxicity with Doxorubicin on Cancer Cells. Bioprocess and Biosystems Engineering, 36(8), 1131–1139. https://doi.org/10.1007/s00449-012-0867-1
Rathinam, N. K., & Berchmans, S. (2013). In Vitro Antiplatelet Activity of Silver Nanoparticles Synthesized Using the Microorganism Glucoroseus: An AFM-Based Study. RSC Advances, 3(23), 8953–8959. https://doi.org/10.1039/c3ra41246f
Rigo, C., Ferroni, L., & Tocco, I. (2013). Active Silver Nanoparticles for Wound Healing. International Journal of Molecular Sciences, 14(3), 4817–4840. https://doi.org/10.3390/ijms14034817
Salari, S., Esmaeilzadeh, S., & Samzadeh-kermani, A. (2019). In-Vitro Evaluation of Antioxidant and Antibacterial Potential of Green Synthesized Silver Nanoparticles Using Prosopis Farcta Fruit Extract. Iranian Journal of Pharmaceutical Research, 18(1), 430–445. Retrieved from https://www.researchgate.net/publication/331234452
Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and Effect of Silver Nanoparticles on the Antibacterial Activity of Different Antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine, 3(2), 168–171. https://doi.org/10.1016/j.nano.2007.02.001
Sibbald, R. G., Contreras-Ruiz, J., Coutts, P., Fierheller, M., Rothman, A., & Woo, K. (2007). Bacteriology, Inflammation, and Healing: A Study of Nanocrystalline Silver Dressings in Chronic Venous Leg Ulcers. Advances in Skin & Wound Care, 20(10), 549–558. https://doi.org/10.1097/01.asw.0000294757.05049.85
Singh, P., Kim, Y. J., & Yang, D. C. (2016). A Strategic Approach for Rapid Synthesis of Gold and Silver Nanoparticles by Panax Ginseng Leaves. Artificial Cells, Nanomedicine, and Biotechnology, 44(8), 1949–1957. https://doi.org/10.3109/21691401.2015.1115410
Suárez-cerda, J., Alonso-nuñez, G., Espinoza-gómez, H., & Flores-lópez, L.Z. (2015). Synthesis, Kinetics and Photocatalytic Study of “Ultra-Small†Ag-NPs Obtained by a Green Chemistry Method Using an Extract of Rosa ’Andeli’ Double Delight Petals. Journal of Colloid and Interface Science, 458, 169-177. https://doi.org/10.1016/j.jcis.2015.07.049
Susanto, S., Sudrajat, D., & Ruga, R. (2012). Studi Kandungan Bahan Aktif Tumbuhan Meranti Merah (Shorea leprosula Miq) sebagai Sumber Senyawa Antibakteri. Mulawarmnan Scientifie, 11(2), 181-190. https://doi.org/10.25026/jtpc.v1i4.41
Tehri, N., Vashishth, A., Gahlaut, A., & Hooda, V. (2022). Biosynthesis, Antimicrobial Spectra and Applications of Silver Nanoparticles: Current Progress and Future Prospects. Inorganic and Nano-Metal Chemistry, 52(1), 1–19. https://doi.org/10.1080/24701556.2020.1862212
Tippayawat, P., Phromviyo, N., Boueroy, P., & Chompoosor, A. (2016). Green Synthesis of Silver Nanoparticles in Aloe Vera Plant Extract Prepared by a Hydrothermal Method and Their Synergistic Antibacterial Activity. PeerJ, 4, e2589. https://doi.org/10.7717/peerj.2589
Vijayaraghavan, K., Nalini, S. P. K., Prakash, N. U., & Madhankumar, D. (2012). One Step Green Synthesis of Silver Nano/Microparticles Using Extracts of Trachyspermum ammi and Papaver somniferum. Colloids and Surfaces B Biointerfaces, 94, 114–117. https://doi.org/10.1016/j.colsurfb.2012.01.026
Willian, N., Syukri, S., Zulhadjri, Z., Labanni, A., & Arief, S. (2020). Bio-Friendly Synthesis of Silver Nanoparticles Using Mangrove Rhizophora Stylosa Leaf Aqueous Extract and Its Antibacterial and Antioxidant Activity. Rasayan Journal of Chemistry, 13(3), 1478–1485. https://doi.org/10.31788/RJC.2020.1335760
Zhang, L., Chen, J., Su, W. S., & Huang, J. J. (2013). Influence of Soy Isoflavone Tincture on Wound Healing of Deep Partial-Thickness Scald in Mice. Chinese J. Tissue Eng. Res., 17, 264–269. https://doi.org/10.3969/j.issn.2095-4344.2013.02.014
Zheng, K., Setyawati, M. I., Leong, D. T., & Xie, J. (2018). Antimicrobial Silver Nanomaterials. Coordination Chemistry Reviews, 357, 1-17. https://doi.org/10.1016/j.ccr.2017.11.019
Zulfiqar, H., Amjad, M. S., Mehmood, A., Mustafa, G., Binish, Z., Khan, S., Arshad, H., Procków, J., Pérez de la Lastra, J. M. (2022). Antibacterial, Antioxidant, and Phytotoxic Potential of Phytosynthesized Silver Nanoparticles Using Elaeagnus umbellata Fruit Extract. Molecules, 27(18), 5847. https://doi.org/10.3390/molecules27185847
Author Biographies
I Wayan Tanjung Aryasa, Program Studi Teknologi Laboratorium Medik,, Fakultas Ilmu-Ilmu Kesehatan, Universitas Bali Internasional, Denpasar, Bali, Indonesia
Ni Putu Rahayu Artini, Program Studi Teknologi Laboratorium Medik,, Fakultas Ilmu-Ilmu Kesehatan, Universitas Bali Internasional, Denpasar, Bali, Indonesia
License
Copyright (c) 2023 I Wayan Tanjung Aryasa, Ni Putu Rahayu Artini
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).