Purification and Characterization of Monazite from Bangka using Mechanical-Magnetic Separation Method

Authors

Herman Aldila , Anisa Indriawati , Permono Adi Putro

DOI:

10.29303/jppipa.v10i5.6644

Published:

2024-05-25

Issue:

Vol. 10 No. 5 (2024): May

Keywords:

Element composition, Mechanical-magnetic separation, Microstructure, Monazite, Rare earth

Research Articles

Downloads

How to Cite

Aldila, H., Indriawati, A., & Putro, P. A. (2024). Purification and Characterization of Monazite from Bangka using Mechanical-Magnetic Separation Method. Jurnal Penelitian Pendidikan IPA, 10(5), 2745–2751. https://doi.org/10.29303/jppipa.v10i5.6644

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

In this research, the purification and characteristics of monazite, a by-product of the tin ore enrichment process. Monazite is given pre-treatment to monazite sand using the mechanical-magnetic separation method to increase the content of rare earth metal elements. Based on the results of the analysis of monazite samples from Tin mine tailings concentrate that has been purified, the dominant elements of the highest rare earth metals are cerium (Ce), lanthanum (La), neodymium (Nd), and Yttrium (Y). The mechanical-magnetic separation method, monazite from Tin mine tailings concentrate can have higher purity. These rare earth metal elements can be further extracted or synthesized; and used as supporting or even main materials in developing advanced technological industries.

References

Abaka-Wood, G. B., Xu, S., Ayedzi, L. D., Addai-Mensah, J., & Skinner, W. (2024). Flotation recovery of monazite from kaolinite using sodium oleate collector: Understanding mineral–collector interaction. Minerals Engineering, 209, 108605. https://doi.org/10.1016/j.mineng.2024.108605

Abdel-Rehim, A. M. (2002). An innovative method for processing Egyptian monazite. Hydrometallurgy, 67(1–3), 9–17. https://doi.org/10.1016/S0304-386X(02)00134-2

Anitha, J. K., Joseph, S., Rejith, R. G., & Sundararajan, M. (2020). Monazite chemistry and its distribution along the coast of Neendakara--Kayamkulam belt, Kerala, India. SN Applied Sciences, 2, 1–18. https://doi.org/10.1007/s42452-020-2594-6

Balaram, V. (2022). Sources and applications of rare earth elements. Environmental Technologies to Treat Rare Earth Elements Pollution: Principles and Engineering; IWA Publishing: London, UK, 75–113.

Belova, V. V. (2017). Development of solvent extraction methods for recovering rare earth metals. Theoretical Foundations of Chemical Engineering, 51(4), 599–609. https://doi.org/10.1134/S004057951605002X

Berry, L., Agarwal, V., Galvin, J., & Safarzadeh, M. S. (2018). Decomposition of monazite concentrate in sulphuric acid. Canadian Metallurgical Quarterly, 57(4), 422–433. https://doi.org/10.1080/00084433.2018.1478490

Bora, J., Deka, P., Bhuyan, P., Sarma, K. P., & Hoque, R. R. (2021). Morphology and mineralogy of ambient particulate matter over mid-Brahmaputra Valley: Application of SEM--EDX, XRD, and FTIR techniques. SN Applied Sciences, 3, 1–15. https://doi.org/10.1007/s42452-020-04117-8

Borai, E. H., Hamed, M. M., & Shahr El-Din, A. M. (2017). A new method for processing of low-grade monazite concentrates. Journal of the Geological Society of India, 89(5), 600–604. https://doi.org/10.1007/s12594-017-0649-0

Chung, K. W., Yoon, H.-S., Kim, C.-J., Lee, J.-Y., & Jyothi, R. K. (2020). Solvent extraction, separation and recovery of thorium from Korean monazite leach liquors for nuclear industry applications. Journal of Industrial and Engineering Chemistry, 83, 72–80. https://doi.org/10.1016/j.jiec.2019.11.014

Clavier, N., Podor, R., & Dacheux, N. (2011). Crystal chemistry of the monazite structure. Journal of the European Ceramic Society, 31(6), 941–976. https://doi.org/10.1016/j.jeurceramsoc.2010.12.019

Demol, J., Ho, E., Soldenhoff, K., & Senanayake, G. (2024). The impact of apatite on sulfuric acid baking of a monazite concentrate and the benefit of goethite addition on rare earth leaching. Hydrometallurgy, 226, 106296. https://doi.org/10.1016/j.hydromet.2024.106296

Durdziński, P., Dunant, C. F., Haha, M. Ben, & Scrivener, K. L. (2015). A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste. Cement and Concrete Research, 73, 111–122. https://doi.org/10.1016/j.cemconres.2015.02.008

Dutta, T., Kim, K.-H., Uchimiya, M., Kwon, E. E., Jeon, B.-H., Deep, A., & Yun, S.-T. (2016). Global demand for rare earth resources and strategies for green mining. Environmental Research, 150, 182–190. https://doi.org/10.1016/j.envres.2016.05.052

Haider, S. K., Lee, J.-Y., Pawar, A. U., Kim, D., & Kang, Y. S. (2021). Novel eco-friendly low cost and energy efficient synthesis of (Nd–Pr–Dy)2Fe14B magnetic powder from monazite concentrate. Scientific Reports, 11(1), 20594. https://doi.org/10.1038/s41598-021-99464-w

Han, S., Lӧhr, S. C., Abbott, A. N., Baldermann, A., Farkaš, J., McMahon, W., Milliken, K. L., Rafiei, M., Wheeler, C., & Owen, M. (2022). Earth system science applications of next-generation SEM-EDS automated mineral mapping. Frontiers in Earth Science, 10, 956912. https://doi.org/10.3389/feart.2022.956912

Indriawati, A., Aldila, H., & Fabiani, V. A. (2020). Synthesis of Rare Earth Metal Oxides Based on Monasite Sand with pH Variations. Stannum : Jurnal Sains dan Terapan Kimia, 2(2), 1–4. https://doi.org/10.33019/jstk.v2i2.1953

Jordens, A., Sheridan, R. S., Rowson, N. A., & Waters, K. E. (2014). Processing a rare earth mineral deposit using gravity and magnetic separation. Minerals Engineering, 62, 9–18. https://doi.org/10.1016/j.mineng.2013.09.011

Kumari, A., Panda, R., Jha, M. K., Kumar, J. R., & Lee, J. Y. (2015). Process development to recover rare earth metals from monazite mineral: A review. Minerals Engineering, 79, 102–115. https://doi.org/10.1016/j.mineng.2015.05.003

Machado, J. G. M. S., Brehm, F. A., Moraes, C. A. M., Dos Santos, C. A., Vilela, A. C. F., & Da Cunha, J. B. M. (2006). Chemical, physical, structural and morphological characterization of the electric arc furnace dust. Journal of Hazardous Materials, 136(3), 953–960. https://doi.org/10.1016/j.jhazmat.2006.01.044

Mahdy, N. M., Ntaflos, T., Pease, V., Sami, M., Slobodnik, M., Steet, A. A. A., Abdelfadil, K. M., & Fathy, D. (2020). Combined zircon U-Pb dating and chemical Th--U--total Pb chronology of monazite and thorite, Abu Diab A-type granite, Central Eastern Desert of Egypt: Constraints on the timing and magmatic-hydrothermal evolution of rare metal granitic magmatism in the Ar. Geochemistry, 80(4), 125669. https://doi.org/10.1016/j.chemer.2020.125669

Mejame, M. P. P., King, D., Banhalmi-Zakar, Z., & He, Y. (2021). Material flow analysis of rare earth elements and their sustainable use in Australia to reduce potential environmental impacts. In Chemeca 2021: Advance, Disrupt and Sustain: Advance, Disrupt and Sustain, 377–378. Retrieved from https://researchonline.jcu.edu.au/81273/14/JCU_81273_Mejame_2022_thesis.pdf

Merritt, R. R. (1990a). High temperature methods for processing monazite: I. Reaction with calcium chloride and calcium carbonate. Journal of the Less Common Metals, 166(2), 197–210. https://doi.org/10.1016/0022-5088(90)90001-Z

Merritt, R. R. (1990b). High temperature methods for processing monazite: II. Reaction with sodium carbonate. Journal of the Less Common Metals, 166(2), 211–219. https://doi.org/10.1016/0022-5088(90)90002-2

Milinovic, J., Rodrigues, F. J. L., Barriga, F. J. A. S., & Murton, B. J. (2021). Ocean-floor sediments as a resource of rare earth elements: an overview of recently studied sites. Minerals, 11(2), 142. https://doi.org/10.3390/min11020142

Ni, Y., Hughes, J. M., & Mariano, A. N. (1995). Crystal chemistry of the monazite and xenotime structures. American Mineralogist, 80(1–2), 21–26. https://doi.org/10.2138/am-1995-1-203

Nuchdang, S., Kingkam, W., Puripunyavanich, V., Suwanmanee, U., Laowattanabandit, P., & Rattanaphra, D. (2021). Structural and morphological characterization of Thai monazite ore processing samples. Songklanakarin Journal of Science & Technology, 43(6). Retrieved from https://shorturl.asia/wF9hr

Okeme, I. C., Martin, P. G., Jones, C., Crane, R. A., Ojonimi, T. I., Ignatyev, K., Megson-Smith, D., & Scott, T. B. (2021). An advanced analytical assessment of rare earth element concentration, distribution, speciation, crystallography and solid-state chemistry in fly ash. Spectrochimica Acta Part B: Atomic Spectroscopy, 177, 105950. https://doi.org/10.1016/j.sab.2020.105950

Omodara, L., Pitkäaho, S., Turpeinen, E.-M., Saavalainen, P., Oravisjärvi, K., & Keiski, R. L. (2019). Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications - A review. Journal of Cleaner Production, 236, 117573. https://doi.org/10.1016/j.jclepro.2019.07.048

Peters, L. (2020). An investigation into the drivers of supply and demand of the rare earth element market. Faculty of Engineering and the Built Environment.

Ramirez-Leal, R., Valle-Martinez, M., Cruz-Campas, M., & others. (2014). Chemical and morphological study of PM10 analysed by SEM-EDS. Open Journal of Air Pollution, 3(04), 121. Retrieved from https://www.scirp.org/html/4-2430068_52213.htm

Rejith, R. G., Sundararajan, M., Mohamed, A. P., & Satyanarayanan, M. (2022). Raman-XPS Spectroscopy, REE Chemistry, and Morphological Studies of Detrital Zircon and Monazite—Implications for Metamict State and Provenance. Journal of the Geological Society of India, 98(7), 893–902. https://doi.org/10.1007/s12594-022-2092-0

Roy, S. K., Nayak, D., & Rath, S. S. (2020). A review on the enrichment of iron values of low-grade Iron ore resources using reduction roasting-magnetic separation. Powder Technology, 367, 796–808. https://doi.org/10.1016/j.powtec.2020.04.047

Sajima, S., Sudaryadi, S., & Sari, E. P. (2020). Pemisahan Zirkon dari Tailing Tambang Timah menggunakan Magnetic Separator. Indonesian Journal of Chemical Science, 9(3), 174–178. https://doi.org/10.15294/IJCS.V10I2.47923

Shahbaz, A. (2022). A systematic review on leaching of rare earth metals from primary and secondary sources. Minerals Engineering, 184, 107632. https://doi.org/10.1016/j.mineng.2022.107632

Subagja, R. (2018). Monasite Bangka dan Alternatif Proses Pengolahannya. Metalurgi, 29(1), 79. https://doi.org/10.14203/metalurgi.v29i1.274

Sumarni, S., Prassanti, R., Trinopiawan, K., Sumiarti, S., & Lissa, H. (2011). Penentuan Kondisi Pelarutan Residu dari Hasil Pelarutan Parsial Monasit Bangka. EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir, 32(2), 115–124. https://doi.org/10.17146/eksplorium.2011.32.2.2819

Tranvik, E., Becker, M., Pålsson, B. I., Franzidis, J.-P., & Bradshaw, D. (2017). Towards cleaner production--Using flotation to recover monazite from a heavy mineral sands zircon waste stream. Minerals Engineering, 101, 30–39. https://doi.org/10.1016/j.mineng.2016.10.011

Udayakumar, S., Mohd Noor, A. F., Sheikh Abdul Hamid, S. A. R., Rama Putra, T. A., & Anderson, C. G. (2020). Chemical and mineralogical characterization of Malaysian monazite concentrate. Mining, Metallurgy & Exploration, 37, 415–431. https://doi.org/10.1007/s42461-019-00173-w

Yu, J., Han, Y., Li, Y., & Gao, P. (2017). Beneficiation of an iron ore fines by magnetization roasting and magnetic separation. International Journal of Mineral Processing, 168, 102–108. https://doi.org/10.1016/j.minpro.2017.09.012

Zi, J.-W., Muhling, J. R., & Rasmussen, B. (2024). Geochemistry of low-temperature (<350 °C) metamorphic and hydrothermal monazite. Earth-Science Reviews, 249, 104668. https://doi.org/10.1016/j.earscirev.2023.104668

Author Biographies

Herman Aldila, Universitas Bangka Belitung

Anisa Indriawati, Universitas Bangka Belitung

Permono Adi Putro, Universitas Mandiri

License

Copyright (c) 2024 Herman Aldila, Anisa Indriawati, Permono Adi Putro

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).