Effect of Foot SPA in Improving Touch Perception in Patients with Type 2 Diabetes
DOI:
10.29303/jppipa.v9iSpecialIssue.6840Published:
2023-12-31Issue:
Vol. 9 No. SpecialIssue (2023): UNRAM journals and research based on science education, science applications towards a golden Indonesia 2045Keywords:
Foot SPA, Sensory Peripheral Neuropathy, Touch Perception, Type 2 DiabetesResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Amputation of lower limbs and the development of foot ulcers are primarily associated with Diabetes Mellitus (DM) and its associated sensory peripheral neuropathy (SPN). A diminished perception of touch perception leads to decreased responsiveness to pressure and is recognized as a risk factor for diabetic foot ulcers. Increasing SPN patients' sense of touch perception in their feet may help prevent foot ulcers. This study aimed to prove the effects of foot SPA in improving touch perception in patients with type 2 Diabetes. This research method is quasi-experimental with one group pre and post-test design without a control group. Sampling was done by purposive sampling with 22 research subjects. The research instrument used a 10-g monofilament test. Foot SPA is carried out 6 days for week. Data analysis used the Paired sample t-test. Statistical test results obtain a p-value <0.05. The results of a week-long study found that foot SPA significantly affects touch perception in type 2 diabetes patients.
References
Ahmad, I., Noohu, M. M., Verma, S., Singla, D., & Hussain, M. E. (2019). Effect of sensorimotor training on balance measures and proprioception among middle and older age adults with diabetic peripheral neuropathy. Gait & Posture, 74, 114–120. https://doi.org/10.1016/j.gaitpost.2019.08.018
Alam, S., Hasan, Md. K., Neaz, S., Hussain, N., Hossain, Md. F., & Rahman, T. (2021). Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive Management. Diabetology, 2(2), 36–50. https://doi.org/10.3390/diabetology2020004
Aljohani, M., Karam, A., Alamri, A., Manfaloti, M., Alnakhli, H., & Shaqroon, H. (2020). Diabetic neuropathy in Saudi Arabia: A comprehensive review for further actions. International Journal of Medicine in Developing Countries, 2008–2013. https://doi.org/10.24911/IJMDC.51-1601343665
Aronson, D., & Rayfield, E. J. (2002). How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovascular Diabetology, 1(1), 1. https://doi.org/10.1186/1475-2840-1-1
Atkins, R. C., & Zimmet, P. (2010). Diabetic kidney disease: Act now or pay later. Acta Diabetologica, 47(1), 1–4. https://doi.org/10.1007/s00592-010-0175-7
Ayelign, B., Negash, M., Genetu, M., Wondmagegn, T., & Shibabaw, T. (2019). Immunological Impacts of Diabetes on the Susceptibility of Mycobacterium tuberculosis. Journal of Immunology Research, 2019, 1–8. https://doi.org/10.1155/2019/6196532
Bansal, D., Gudala, K., Muthyala, H., Esam, H. P., Nayakallu, R., & Bhansali, A. (2014). Prevalence and risk factors of development of peripheral diabetic neuropathy in type 2 diabetes mellitus in a tertiary care setting. Journal of Diabetes Investigation, 5(6), 714–721. https://doi.org/10.1111/jdi.12223
Biddinger, S. B., & Kahn, C. R. (2006). FROM MICE TO MEN: Insights into the Insulin Resistance Syndromes. Annual Review of Physiology, 68(1), 123–158. https://doi.org/10.1146/annurev.physiol.68.040104.124723
Chatchawan, U., Eungpinichpong, W., Plandee, P., & Yamauchi, J. (2015). Effects of Thai Foot Massage on Balance Performance in Diabetic Patients with Peripheral Neuropathy: A Randomized Parallel-Controlled Trial. Medical Science Monitor Basic Research, 21, 68–75. https://doi.org/10.12659/MSMBR.894163
Del Buono, M. G., Montone, R. A., Camilli, M., Carbone, S., Narula, J., Lavie, C. J., Niccoli, G., & Crea, F. (2021). Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases. Journal of the American College of Cardiology, 78(13), 1352–1371. https://doi.org/10.1016/j.jacc.2021.07.042
Deli, G., Bosnyak, E., Pusch, G., Komoly, S., & Feher, G. (2013). Diabetic Neuropathies: Diagnosis and Management. Neuroendocrinology, 98(4), 267–280. https://doi.org/10.1159/000358728
Dixon, C. J., Knight, T., Binns, E., Ihaka, B., & O’Brien, D. (2017). Clinical measures of balance in people with type two diabetes: A systematic literature review. Gait & Posture, 58, 325–332. https://doi.org/10.1016/j.gaitpost.2017.08.022
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21(17), 6275. https://doi.org/10.3390/ijms21176275
Gottwald-Hostalek, U., & Gwilt, M. (2022). Vascular complications in prediabetes and type 2 diabetes: A continuous process arising from a common pathology. Current Medical Research and Opinion, 38(11), 1841–1851. https://doi.org/10.1080/03007995.2022.2101805
Kärvestedt, L., Mårtensson, E., Grill, V., Elofsson, S., Von Wendt, G., Hamsten, A., & Brismar, K. (2011). The prevalence of peripheral neuropathy in a population-based study of patients with type 2 diabetes in Sweden. Journal of Diabetes and Its Complications, 25(2), 97–106. https://doi.org/10.1016/j.jdiacomp.2010.04.001
Ko, S.-H., & Cha, B.-Y. (2012). Diabetic Peripheral Neuropathy in Type 2 Diabetes Mellitus in Korea. Diabetes & Metabolism Journal, 36(1), 6. https://doi.org/10.4093/dmj.2012.36.1.6
Lassie, N., Ashan, H., Triola, S., & Widiastuti, W. (2023). Risk Factors of Opthalmoplegia in Diabetes Mellitus. Jurnal Penelitian Pendidikan IPA, 9(10), 868–875. https://doi.org/10.29303/jppipa.v9i10.4676
Li, Y., Liu, Y., Liu, S., Gao, M., Wang, W., Chen, K., Huang, L., & Liu, Y. (2023). Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduction and Targeted Therapy, 8(1), 152. https://doi.org/10.1038/s41392-023-01400-z
Lipsky, B. A., Weigelt, J. A., Sun, X., Johannes, R. S., Derby, K. G., & Tabak, Y. P. (2011). Developing and Validating a Risk Score for Lower-Extremity Amputation in Patients Hospitalized for a Diabetic Foot Infection. Diabetes Care, 34(8), 1695–1700. https://doi.org/10.2337/dc11-0331
Lu, B., Yang, Z., Wang, M., Yang, Z., Gong, W., Yang, Y., Wen, J., Zhang, Z., Zhao, N., Zhu, X., & Hu, R. (2010). High prevalence of diabetic neuropathy in population-based patients diagnosed with type 2 diabetes in the Shanghai downtown. Diabetes Research and Clinical Practice, 88(3), 289–294. https://doi.org/10.1016/j.diabres.2010.02.002
Maiorino, M. I., Bellastella, G., Giugliano, D., & Esposito, K. (2017). Can diet prevent diabetes? Journal of Diabetes and Its Complications, 31(1), 288–290. https://doi.org/10.1016/j.jdiacomp.2016.10.009
Mauricio, D., Gratacòs, M., & Franch-Nadal, J. (2023). Diabetic microvascular disease in non-classical beds: The hidden impact beyond the retina, the kidney, and the peripheral nerves. Cardiovascular Diabetology, 22(1), 314. https://doi.org/10.1186/s12933-023-02056-3
Mustapa, A., Justine, M., Mohd Mustafah, N., Jamil, N., & Manaf, H. (2016). Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review. BioMed Research International, 2016, 1–14. https://doi.org/10.1155/2016/9305025
Needs, D., Blotter, J., Cowan, M., Fellingham, G., Johnson, A. W., & Feland, J. B. (2023). Effect of Localized Vibration Massage on Popliteal Blood Flow. Journal of Clinical Medicine, 12(5), 2047. https://doi.org/10.3390/jcm12052047
Negrato, C. A., & Tarzia, O. (2010). Buccal alterations in diabetes mellitus. Diabetology & Metabolic Syndrome, 2(1), 3. https://doi.org/10.1186/1758-5996-2-3
Orasanu, G., & Plutzky, J. (2009). The Pathologic Continuum of Diabetic Vascular Disease. Journal of the American College of Cardiology, 53(5), S35–S42. https://doi.org/10.1016/j.jacc.2008.09.055
Otsuka, A., Azuma, K., Iesaki, T., Sato, F., Hirose, T., Shimizu, T., Tanaka, Y., Daida, H., Kawamori, R., & Watada, H. (2005). Temporary hyperglycaemia provokes monocyte adhesion to endothelial cells in rat thoracic aorta. Diabetologia, 48(12), 2667–2674. https://doi.org/10.1007/s00125-005-0005-6
Patel, S., Srivastava, S., Singh, M. R., & Singh, D. (2019). Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomedicine & Pharmacotherapy, 112, 108615. https://doi.org/10.1016/j.biopha.2019.108615
Piga, R., Naito, Y., Kokura, S., Handa, O., & Yoshikawa, T. (2007). Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis, 193(2), 328–334. https://doi.org/10.1016/j.atherosclerosis.2006.09.016
Quagliaro, L., Piconi, L., Assaloni, R., Daros, R., Maier, A., Zuodar, G., & Ceriello, A. (2005). Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: The distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis, 183(2), 259–267. https://doi.org/10.1016/j.atherosclerosis.2005.03.015
S Valvassori, S., H Cararo, J., Peper-Nascimento, J., L Ferreira, C., F Gava, F., C Dal-Pont, G., L Andersen, M., & Quevedo, J. (2020). Protein kinase C isoforms as a target for manic-like behaviors and oxidative stress in a dopaminergic animal model of mania. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 101, 109940. https://doi.org/10.1016/j.pnpbp.2020.109940
Schleicher, E., & Friess, U. (2007). Oxidative stress, AGE, and atherosclerosis. Kidney International, 72, S17–S26. https://doi.org/10.1038/sj.ki.5002382
Sharma, T., Raman, R., Pal, S., Rani, P., Rachapalli, S., & Kulothungan, V. (2010). Prevalence and risk factors for severity of diabetic neuropathy in type 2 diabetes mellitus. Indian Journal of Medical Sciences, 64(2), 51. https://doi.org/10.4103/0019-5359.94400
Shoelson, S. E. (2006). Inflammation and insulin resistance. Journal of Clinical Investigation, 116(7), 1793–1801. https://doi.org/10.1172/JCI29069
Silnitsky, S., Rubin, S. J. S., Zerihun, M., & Qvit, N. (2023). An Update on Protein Kinases as Therapeutic Targets—Part I: Protein Kinase C Activation and Its Role in Cancer and Cardiovascular Diseases. International Journal of Molecular Sciences, 24(24), 17600. https://doi.org/10.3390/ijms242417600
Tamarai, K., Bhatti, J. S., & Reddy, P. H. (2019). Molecular and cellular bases of diabetes: Focus on type 2 diabetes mouse model-TallyHo. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1865(9), 2276–2284. https://doi.org/10.1016/j.bbadis.2019.05.004
Wardani, I. S. (2023). Hidroksi Metil Glutaril Coenzyme-A (HMG CoA) Reduktase Inhibitor and New Onset Diabetes Mellitus: A Review of Correlation and Clinical Implication. Jurnal Penelitian Pendidikan IPA, 9(9), 580–585. https://doi.org/10.29303/jppipa.v9i9.5274
Xiao, Q., Wang, D., Li, D., Huang, J., Ma, F., Zhang, H., Sheng, Y., Zhang, C., & Ha, X. (2023). Protein kinase C: A potential therapeutic target for endothelial dysfunction in diabetes. Journal of Diabetes and Its Complications, 37(9), 108565. https://doi.org/10.1016/j.jdiacomp.2023.108565
Yuan, T., Yang, T., Chen, H., Fu, D., Hu, Y., Wang, J., Yuan, Q., Yu, H., Xu, W., & Xie, X. (2019). New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biology, 20, 247–260. https://doi.org/10.1016/j.redox.2018.09.025
Ziegler, D., Papanas, N., Vinik, A. I., & Shaw, J. E. (2014). Epidemiology of polyneuropathy in diabetes and prediabetes. In Handbook of Clinical Neurology, 126, 3–22. https://doi.org/10.1016/B978-0-444-53480-4.00001-1
License
Copyright (c) 2023 Ruslan Hasani, Gede Wiadnyana, Bahtiar Bahtiar, Junaidi Junaidi, Rahman Rahman, Sri Angriani, Sukriyadi Sukriyadi, Hamsina Hamsina

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).