BC-g-PAA: Characterization and Establishment of the IPN Hydrogel
DOI:
10.29303/jppipa.v10i5.7007Published:
2024-05-31Issue:
Vol. 10 No. 5 (2024): MayKeywords:
Bacterial cellulose, Characterization, Crosslinking, IPN Hydrogel, MBAResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
A study on the manufacture of bacterial cellulose IPN hydrogel crosslinked poly acrylic acid using the MBA crosslinker. This study aims to characterize and observe the reaction to form bacterial cellulose-based hydrogel IPN. The BC-g-PAA was characterized by the degree of cross-linking, swelling ratio, and FTIR analysis. The results of this study found predictions of the reaction process for the formation of IPN Hydrogel in several process stages, namely 1) The polymerization process of bacterial cellulose chains that form cross-linked networks independently, 2) The process of cross-linking Acrylate monomers with MBA crosslinkers in three steps, i.e. initiation, propagation and termination, 3) Reaction process Formation of IPN network. The results of the characterization test for the degree of crosslinking were 54.55%; Swelling ratio of 1631.25%. FTIR analysis shows that there is a peak that identifies the occurrence of crosslinking
References
Abiaziem, C. V., Williams, A. B., Inegbenebor, A. I., Onwordi, C. T., Ehi-Eromosele, C. O., & Petrik, L. F. (2020). Isolation and Characterisation of Cellulose Nanocrystal Obtained from Sugarcane Peel. Rasayan Journal of Chemistry, 13(01), 177–187. https://doi.org/10.31788/RJC.2020.1315328
Aswathy, S. H., Narendrakumar, U., & Manjubala, I. (2020). Commercial hydrogels for biomedical applications. Heliyon, 6(4), e03719. https://doi.org/10.1016/j.heliyon.2020.e03719
Aswathy, S. H., NarendraKumar, U., & Manjubala, I. (2022). Physicochemical Properties of Cellulose-Based Hydrogel for Biomedical Applications. Polymers, 14(21), 4669. https://doi.org/10.3390/polym14214669
Chaiyasat, A., Jearanai, S., Moonmangmee, S., Moonmangmee, D., P Christopher, L., Nur Alam, M., & Chaiyasat, P. (2018). Novel Green Hydrogel Material using Bacterial Cellulose. Oriental Journal of Chemistry, 34(4), 1735–1740. https://doi.org/10.13005/ojc/340404
Dutta, S. D., Patel, D. K., & Lim, K.-T. (2019). Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. Journal of Biological Engineering, 13(1), 55. https://doi.org/10.1186/s13036-019-0177-0
Firlar, I., Altunbek, M., McCarthy, C., Ramalingam, M., & Camci-Unal, G. (2022). Functional Hydrogels for Treatment of Chronic Wounds. Gels, 8(2), 127. https://doi.org/10.3390/gels8020127
Gao, M., Li, J., Bao, Z., Hu, M., Nian, R., Feng, D., An, D., Li, X., Xian, M., & Zhang, H. (2019). A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nature Communications, 10(1), 437. https://doi.org/10.1038/s41467-018-07879-3
Hu, W., Wang, Z., Xiao, Y., Zhang, S., & Wang, J. (2019). Advances in crosslinking strategies of biomedical hydrogels. Biomaterials Science, 7(3), 843–855. https://doi.org/10.1039/C8BM01246F
Huang, B., Liu, M., & Zhou, C. (2017). Chitosan composite hydrogels reinforced with natural clay nanotubes. Carbohydrate Polymers, 175, 689–698. https://doi.org/10.1016/j.carbpol.2017.08.039
Iqbal, M., Yuniarti, E., Amran, A., & Putra, A. (2022). Karakterisasi Komposit Selulosa Bakteri – Ekstrak Daun Kacapiring (Gardenia Jassminoides J.Ellis) dengan Penambahan Crosslinker. Jurnal Periodic Jurusan Kimia UNP, 11(1), 84. https://doi.org/10.24036/p.v11i1.113666
Irham, W. H., Hardiyanti, R., & Rugaya. (2023). Structural analysis of bacterial cellulose supplemented Curcuma Longa Linn extract for wound healing. AIP Conference Proceedings, 2431, 050002. https://doi.org/10.1063/5.0116604
Irham, W. H., Marpongahtun, & Dur, S. (2023). Improving mechanical properties of bacterial cellulose with supplemented Curcuma Longa Linn extract for wound healing. AIP Conference Proceedings, 2431, 050001. https://doi.org/10.1063/5.0114810
Irham, W. H., Tamrin, Marpaung, L., & Marpongahtun. (2020). Characterization of bacterial cellulose from coconut water supplemented Curcuma Longa Linn and Ziziphus Mauritiana extract. AIP Conference Proceedings, 2267, 020056. https://doi.org/10.1063/5.0023953
Irham, W. H., Tamrin, Marpaung, L., & Marpongahtun. (2021). Morphology of bacterial cellulose-Curcuma longa Linn from acetobacter xylinum for wound healing. AIP Conference Proceedings, 2342, 060002. https://doi.org/10.1063/5.0045493
Kabir, S. M. F., Sikdar, P. P., Haque, B., Bhuiyan, M. A. R., Ali, A., & Islam, M. N. (2018). Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Progress in Biomaterials, 7(3), 153–174. https://doi.org/10.1007/s40204-018-0095-0
Khan, M. U. A., Iqbal, I., Ansari, M. N. M., Razak, S. I. A., Raza, M. A., Sajjad, A., Jabeen, F., Mohamad, M. R., & Jusoh, N. (2021). Development of antibacterial, degradable and ph-responsive chitosan/guar gum/polyvinyl alcohol blended hydrogels for wound dressing. Molecules, 26(19), 5937. https://doi.org/10.3390/molecules26195937
Lee, D. S., Kang, J. Il, Hwang, B. H., & Park, K. M. (2019). Interpenetrating Polymer Network Hydrogels of Gelatin and Poly(ethylene glycol) as an Engineered 3D Tumor Microenvironment. Macromolecular Research, 27(2), 205–211. https://doi.org/10.1007/s13233-019-7072-x
Na, R., Liu, Y., Lu, N., Zhang, S., Liu, F., & Wang, G. (2019). Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for flexible supercapacitors. Chemical Engineering Journal, 374, 738–747. https://doi.org/10.1016/j.cej.2019.06.004
Nesrinne, S., & Djamel, A. (2017). Synthesis, characterization and rheological behavior of pH sensitive poly(acrylamide-co-acrylic acid) hydrogels. Arabian Journal of Chemistry, 10(4), 539–547. https://doi.org/10.1016/j.arabjc.2013.11.027
Orlando, I. (2019). Antibiotic-Free Antibacterial Hydrogels For Wound Healing Applications. University of Westmister. https://doi.org/10.34737/qz084
Santosa, B., Tantalu, L., & Sairo, N. W. (2022). Sintesis selulosa bakteri dari jerami kulit nangka dengan penambahan beberapa konsentrasi sukrosa. AGROMIX, 13(1), 67–73. https://doi.org/10.35891/agx.v13i1.2881
Silva, I. G. R. da, Pantoja, B. T. dos S., Almeida, G. H. D. R., Carreira, A. C. O., & Miglino, M. A. (2022). Bacterial Cellulose and ECM Hydrogels: An Innovative Approach for Cardiovascular Regenerative Medicine. International Journal of Molecular Sciences, 23(7), 3955. https://doi.org/10.3390/ijms23073955
Smyslov, R. Y., Kopitsa, G. P., Gorshkova, Y. E., Ezdakova, K. V., Khripunov, A. K., Migunova, A. V, Tsvigun, N. V, Korzhova, S. A., Emel’yanov, A. I., & Pozdnyakov, A. S. (2022). Novel biocompatible Cu2+-containing composite hydrogels based on bacterial cellulose and poly-1-vinyl-1,2,4-triazole. Smart Materials in Medicine, 3, 382–389. https://doi.org/10.1016/j.smaim.2022.05.002
Suryanto, H. (2017). Analisis Struktur Serat Selulosa Dari Bakteri. Prosiding SNTT 2017, 3(October), 17–22. Retrieved from https://www.researchgate.net/publication/320508509
Wang, C., Feng, N., Chang, F., Wang, J., Yuan, B., Cheng, Y., Liu, H., Yu, J., Zou, J., Ding, J., & Chen, X. (2019). Injectable Cholesterol‐Enhanced Stereocomplex Polylactide Thermogel Loading Chondrocytes for Optimized Cartilage Regeneration. Advanced Healthcare Materials, 8(14), 1900312. https://doi.org/10.1002/adhm.201900312
Wang, Y., Jiang, Z., Xu, W., Yang, Y., Zhuang, X., Ding, J., & Chen, X. (2019). Chiral Polypeptide Thermogels Induce Controlled Inflammatory Response as Potential Immunoadjuvants. ACS Applied Materials & Interfaces, 11(9), 8725–8730. https://doi.org/10.1021/acsami.9b01872
Wu, G., Jin, K., Liu, L., & Zhang, H. (2020). A rapid self-healing hydrogel based on PVA and sodium alginate with conductive and cold-resistant properties. Soft Matter, 16(13), 3319–3324. https://doi.org/10.1039/C9SM02455G
Zhang, Y., Yu, J., Ren, K., Zuo, J., Ding, J., & Chen, X. (2019). Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering. Biomacromolecules, 20(4), 1478–1492. https://doi.org/10.1021/acs.biomac.9b00043
Zhao, C., Liu, G., Tan, Q., Gao, M., Chen, G., Huang, X., Xu, X., Li, L., Wang, J., Zhang, Y., & Xu, D. (2023). Polysaccharide-based biopolymer hydrogels for heavy metal detection and adsorption. Journal of Advanced Research, 44, 53–70. https://doi.org/10.1016/j.jare.2022.04.005
Zou, Z., Zhang, B., Nie, X., Cheng, Y., Hu, Z., Liao, M., & Li, S. (2020). A sodium alginate-based sustained-release IPN hydrogel and its applications. RSC Advances, 10(65), 39722–39730. https://doi.org/10.1039/D0RA04316H
Author Biographies
Jelita, IAIN Langsa, Aceh
Sri Wahyuna Saragih, Institut Teknologi Sawit Indonesia
Wardatul Husna Irham, Institut Teknologi Sawit Indonesia
License
Copyright (c) 2024 Jelita, Sri Wahyuna Saragih, Wardatul Husna Irham
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).