Electrical Impedance Study in Diabetes Mellitus
DOI:
10.29303/jppipa.v10i7.7043Published:
2023-07-25Issue:
Vol. 10 No. 7 (2024): JulyKeywords:
BIA, Diabetes, Electrical, ImpedanceResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Diabetes mellitus has raised concerns about structural and functional changes in blood cells, as well as changes in blood impedance. The purpose of this study is to investigate the relationship between electrical impedance values measured with the Bioelectrical Impedance Analyzer (BIA) in diabetes patients. Blood samples were collected from 5 healthy people and 5 diabetes patients for the study. Electrical impedance testing with a BIA. The impedance method determines the electrical properties of blood by measuring its resistance and reactance at various frequencies. The results of the BIA are analyzed and compared to body health parameters such as the blood glucose level index. The average electrical impedance value in diabetes mellitus patients measured at a frequency of 100 Hz to 100 kHz with a current injection of 10 μA was found to be lower than the average electrical impedance value in healthy people. This study shows that the electrical impedance value of diabetes mellitus patients is lower than the impedance value of healthy people. This is consistent with diabetes mellitus patients' blood glucose levels, which are higher than healthy people's blood glucose levels.
References
Akhtar, S., Hassan, F., Saqlain, S. R., Ali, A., & Hussain, S. (2023). The prevalence of peripheral neuropathy among the patients with diabetes in Pakistan: a systematic review and meta-analysis. Scientific Reports, 13(1), 1–9. https://doi.org/10.1038/s41598-023-39037-1
Alam, S., Hasan, M. K., Neaz, S., Hussain, N., Hossain, M. F., & Rahman, T. (2021). Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis. Complications and Comprehensive Management. Diabetology, 2(2), 36–50. https://doi.org/10.3390/diabetology2020004
Aleixo, G. F. P., Shachar, S. S., Nyrop, K. A., Muss, H. B., Battaglini, C. L., & Williams, G. R. (2020). Bioelectrical Impedance Analysis for the Assessment of Sarcopenia in Patients with Cancer: A Systematic Review. The Oncologist, 25(2), 170–182. https://doi.org/10.1634/theoncologist.2019-0600
Ariyoshi, K., Siroma, Z., Mineshige, A., Takeno, M., Fukutsuka, T., Abe, T., & Uchida, S. (2022). Electrochemical Impedance Spectroscopy Part 1: Fundamentals†. Electrochemistry, 90(10). https://doi.org/10.5796/electrochemistry.22-66071
Banday, M. Z., Sameer, A. S., & Nissar, S. (2020). Pathophysiology of diabetes: An overview. Avicenna Journal of Medicine, 10(04), 174–188. https://doi.org/10.4103/ajm.ajm_53_20
Berzuini, A., Bianco, C., Migliorini, A. C., Maggioni, M., Valenti, L., & Prati, D. (2021). Red blood cell morphology in patients with COVID-19-related anaemia. Blood Transfusion, 19(1), 34–36. https://doi.org/10.2450/2020.0242-20
Bolla, A. S., & Priefer, R. (2020). Blood glucose monitoring- an overview of current and future non-invasive devices. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(5), 739–751. https://doi.org/10.1016/j.dsx.2020.05.016
Casadei, G., Filippini, M., & Brognara, L. (2021). Glycated Hemoglobin (HbA1c) as a Biomarker for Diabetic Foot Peripheral Neuropathy. Diseases, 9(1), 16. https://doi.org/10.3390/diseases9010016
Deischinger, C., Dervic, E., Leutner, M., Kosi-Trebotic, L., Klimek, P., Kautzky, A., & Kautzky-Willer, A. (2020). Diabetes mellitus is associated with a higher risk for major depressive disorder in women than in men. BMJ Open Diabetes Research and Care, 8(1). https://doi.org/10.1136/bmjdrc-2020-001430
Drab, M., Gongadze, E., Kralj-Iglič, V., & Iglič, A. (2020). Electric double layer and orientational ordering of water dipoles in narrow channels within a modified Langevin Poisson-Boltzmann model. Entropy, 22(9). https://doi.org/10.3390/E22091054
Dubiel, A. (2019). Bioelectrical Impedance Analysis in Medicine. World Scientific News, 125(March), 127–138. Retrieved from https://www.worldscientificnews.com
Eke, C. B., Ibekwe, M.-A. U., Onukwuli, V. O., Chikani, U. N., Ogugua, C. F., & Uwaezuoke, N. A. (2020). Bio-electric impedance analysis of body composition and glycaemic control in children and adolescents with type 1 diabetes in south-east, Nigeria. Orient Journal of Medicine, 31(3–4), 111–123. Retrieved from https://www.ajol.info/index.php/ojm/article/view/192468
Elblbesy, M. A. (2019). Electrical analysis of normal and diabetic blood for evaluation of aggregation and coagulation under different rheological conditions. Medical Devices: Evidence and Research, 12, 435–442. https://doi.org/10.2147/MDER.S223794
Gonzalez-Correa, C. A., Rivera-Garzón, R. A., & Martínez-Taútiva, S. (2019). Electric impedance and the healing of diabetic foot ulcers. Journal of Physics: Conference Series, 1272(1). https://doi.org/10.1088/1742-6596/1272/1/012009
Grossi, M., & Riccò, B. (2017). Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review. Journal of Sensors and Sensor Systems, 6(2), 303–325. https://doi.org/10.5194/jsss-6-303-2017
Hess, J. R. (2014). Measures of stored red blood cell quality. Vox Sanguinis, 107(1), 1–9. https://doi.org/10.1111/vox.12130
Hossain, Q. D., & Dhar, S. K. (2013). Characterization of Physiological Glucose Glu cose Concentration Using Electrical Impedance Spectroscopy. International Journal of Computer Science Issues, 10(1), 105–111. Retrieved from https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3509155be1103d8af58f90c1e43fc3ac620d0a90
Kamat, D. K., Bagul, D., & Patil, P. M. (2014). Blood Glucose Measurement Using Bioimpedance Technique. Advances in Electronics, 1–5. https://doi.org/10.1155/2014/406257
Kumar, R., Saha, P., Kumar, Y., Sahana, S., Dubey, A., & Prakash, O. (2020). A Review on Diabetes Mellitus : Type1 & Type2. World Journal of Pharmacy and Pharmaceutical Sciences, 9(10), 838–850. https://doi.org/10.20959/wjpps202010-17336
Li, Y., Nowak, C. M., Pham, U., Nguyen, K., & Bleris, L. (2021). Cell morphology-based machine learning models for human cell state classification. Npj Systems Biology and Applications, 7(1), 1–9. https://doi.org/10.1038/s41540-021-00180-y
Lyons-Reid, J., Derraik, J. G. B., Ward, L. C., Tint, M. T., Kenealy, T., & Cutfield, W. S. (2021). Bioelectrical impedance analysis for assessment of body composition in infants and young children-A systematic literature review. Clinical Obesity, 11(3), 2–4. https://doi.org/10.1111/cob.12441
Machino, M., Ando, K., Kobayashi, K., Nakashima, H., Tanaka, S., Kanbara, S., Ito, S., Inoue, T., Koshimizu, H., Seki, T., Ishizuka, S., Takegami, Y., Hasegawa, Y., & Imagama, S. (2021). Bioelectrical impedance analysis and manual measurements of neck circumference are interchangeable, and declining neck circumference is related to presarcopenia. BioMed Research International. https://doi.org/10.1155/2021/6622398
Manoharan, H., Jayaseelan, D., & Appu, S. (2023). A Comparative Study on Continuous Glucose Monitoring Devices for Managing Diabetes Mellitus. Revue d’Intelligence Artificielle, 37(5), 1351–1360. https://doi.org/10.18280/ria.370528
Nicolson, G. L. (2014). The Fluid - Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochimica et Biophysica Acta - Biomembranes, 1838(6), 1451–1466. https://doi.org/10.1016/j.bbamem.2013.10.019
Omura-Ohata, Y., Son, C., Makino, H., Koezuka, R., Tochiya, M., Tamanaha, T., Kishimoto, I., & Hosoda, K. (2019). Efficacy of visceral fat estimation by dual bioelectrical impedance analysis in detecting cardiovascular risk factors in patients with type 2 diabetes. Cardiovascular Diabetology, 18(1), 1–8. https://doi.org/10.1186/s12933-019-0941-y
Pedro, B. G., Marcôndes, D. W. C., & Bertemes-Filho, P. (2020). Analytical model for blood glucose detection using electrical impedance spectroscopy. Sensors (Switzerland), 20(23), 1–11. https://doi.org/10.3390/s20236928
Portugal, M. R. C., Canella, D. S., Curioni, C. C., Bezerra, F. F., Faerstein, E., Neves, M. F., & Koury, J. C. (2020). Bioelectrical impedance analysis–derived phase angle is related to risk scores of a first cardiovascular event in adults. Nutrition, 78, 110865. https://doi.org/10.1016/j.nut.2020.110865
Pouragha, H., Amiri, M., Saraei, M., Pouryaghoub, G., & Mehrdad, R. (2021). Body impedance analyzer and anthropometric indicators; predictors of metabolic syndrome. Journal of Diabetes and Metabolic Disorders, 20(2), 1169–1178. https://doi.org/10.1007/s40200-021-00836-w
Prasad, A., & Roy, M. (2020). Bioimpedance analysis of vascular tissue and fluid flow in human and plant body: A review. Biosystems Engineering, 197, 170–187. https://doi.org/10.1016/j.biosystemseng.2020.06.006
Risinger, M., & Kalfa, T. A. (2021). Red cell membrane disorders: structure meets function. Blood, 136(11). https://doi.org/10.1182/blood.2019000946
Salacinski, A. J., Alford, M., Drevets, K., Hart, S., & Hunt, B. E. (2014). Validity and reliability of a glucometer against industry reference standards. Journal of Diabetes Science and Technology, 8(1), 95–99. https://doi.org/10.1177/1932296813514315
Schofield, Z., Meloni, G. N., Tran, P., Zerfass, C., Sena, G., Hayashi, Y., Grant, M., Contera, S. A., Minteer, S. D., Kim, M., Prindle, A., Rocha, P., Djamgoz, M. B. A., Pilizota, T., Unwin, P. R., Asally, M., & Soyer, O. S. (2020). Bioelectrical understanding and engineering of cell biology. Journal of the Royal Society Interface, 17(166). https://doi.org/10.1098/rsif.2020.0013
Sharma, D., Shenoy, S., & Singh, J. (2010). Effect of electrical stimulation on blood glucose level and lipid profile of sedentary type 2 diabetic patients. International Journal of Diabetes in Developing Countries, 30(4), 194–200. https://doi.org/10.4103/0973-3930.70859
Silva-Tinoco, R., Castillo-Martínez, L., Cuatecontzi-Xochitiotzi, T., Torre-Saldaña, V., Rosales-Rosas, D., González-Cantú, A., Romero-Ibarguengoitia, M. E., León-García, E., & Serna-Alvarado, J. (2021). Bioimpedance phase angle and body composition parameters associated with number of diabetes-related complications. Revista Mexicana de Endocrinologia, Metabolism Nutricion, 8(2), 57–64. https://doi.org/10.24875/rme.20000026
Sucipto, S., Firmanda Al Riza, D., Almer Hasan, M. L., Yuliatun, S., Supriyanto, S., & Supriatna Somantri, A. (2016). Effect of Sample Size, Frequency, and Temperature on the Bioelectrical Properties of Sugarcane (Saccharum officanarum L.) for Rapid Prediction of Sugarcane Yield. Industria: Jurnal Teknologi Dan Manajemen Agroindustri, 5(3), 140–148. https://doi.org/10.21776/ub.industria.2016.005.03.4
Sun, D., Frankel, G. S., Brantley, W. A., Heshmati, R. H., & Johnston, W. M. (2021). Electrochemical impedance spectroscopy study of corrosion characteristics of palladium–silver dental alloys. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 109(11), 1777–1786. https://doi.org/10.1002/jbm.b.34837
Torres, I. A., Leija, L., Vera, A., Ávila, D., Maldonado, H., Gutiérrez, J., Carrillo, M., Gutiérrez, M. I., & Ramos, A. (2023). Proposal of a Non-Invasive Measurement of Physical Properties of Tissues in Patients with Diabetic Foot: Measurement Experiences in Diagnosed Patients. Applied Sciences (Switzerland), 13(4). https://doi.org/10.3390/app13042026
Tronstad, C., Amini, M., Olesen, E., Qvigstad, E., Pabst, O., Martinsen, T., Abie, S. M., Martinsen, Ø. G., Hisdal, J., Jenssen, T. G., & Kalvøy, H. (2022). Diabetic foot assessment using skin impedance in a custom made sensor-sock. Journal of Electrical Bioimpedance, 13(1), 136–142. https://doi.org/10.2478/joeb-2022-0019
Ulubeli, S. A., Baþkale, E., & Kaska, Y. (2020). Red blood cell morphology and blood biochemistry of bufotes variabilis. Russian Journal of Herpetology, 27(6), 316–324. https://doi.org/10.30906/1026-2296-2020-27-6-316-324
Wang, Y., Yang, P., Yan, Z., Liu, Z., Ma, Q., Zhang, Z., Wang, Y., & Su, Y. (2021). The Relationship between Erythrocytes and Diabetes Mellitus. Journal of Diabetes Research. https://doi.org/10.1155/2021/6656062
Author Biographies
Laily Ardhianti Putri, Universitas Brawijaya
Ekowati Retnaningtyas, Malang State Health Polytechnic, Malang
Shahdevi Nandar Kurniawan, University of Brawijaya, Malang
Hani Susianti, University of Brawijaya, Malang
Andry Gonius, University of Brawijaya, Malang
Atika Windra Sari, Universitas Gadjah Mada
Chomsin Sulistya Widodo, University of Brawijaya, Malang
License
Copyright (c) 2024 Laily Ardhianti Putri, Ekowati Retnaningtyas, Shahdevi Nandar Kurniawan, Hani Susianti, Andry Gonius, Atika Windra Sari, Chomsin Sulistya Widodo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).