Accurately Determining Labor Test Results Using the Rough Set Method
DOI:
10.29303/jppipa.v10i4.7069Published:
2024-04-25Issue:
Vol. 10 No. 4 (2024): AprilKeywords:
Knowledge, Lab exams, Machine learning, Rough set method, RulesResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
An exam is something that must be done to test a person's ability or intelligence. The laboratory exam in the Computer Systems study program at Putra Indonesia University "YPTK" Padang consists of a digital systems exam, a fuzzy logic control exam, and a tool presentation. The Labor Exam must be passed by students who will take the comprehensive exam. In this study, laboratory exam data was taken for 20 students. So far, processing of student laboratory exam results has been done manually so it takes a long time to make decisions. To overcome this problem, a Rough Set method is used to determine laboratory test results. The Rough Set method is part of machine learning. This research produces 29 rules as knowledge, namely {Digital System} Or {A} = 3 rules, {Fuzzy Logic} Or {B} = 3 rules, {Tool Presentation} Or {C} = 3 rules, {Fuzzy Logic, Tool Percentage} Or {BC} = 6 rules, {Digital System, Fuzzy Logic} Or {AB} = 6 rules and {Digital System, Tool Percentage} Or {AC} = 8 rules. The Rough Set method can determine student laboratory exam results (pass or fail) accurately.
References
Abdulrahman, M. D., Faruk, N., Oloyede, A. A., Surajudeen-Bakinde, N. T., Olawoyin, L. A., Mejabi, O. V., Imam-Fulani, Y. O., Fahm, A. O., & Azeez, A. L. (2020). Multimedia Tools in the Teaching and Learning Processes: A Systematic Review. Heliyon, 6(11), e05312. https://doi.org/10.
/j.heliyon.2020.e05312
Ali, M. I., Davvaz, B., & Shabir, M. (2013). Some Properties of Generalized Rough Sets. Information Sciences, 224, 170–179. https://doi.org/10.1016/
j.ins.2012.10.026
Ali, W., Shaheen, T., Haq, I. U., Toor, H. G., Alballa, T., & Khalifa, H. A. E.-W. (2023). A Novel Interval-Valued Decision Theoretic Rough Set Model with Intuitionistic Fuzzy Numbers Based on Power Aggregation Operators and Their Application in Medical Diagnosis. Mathematics, 11(19), 4153. https://doi.org/10.3390/math11194153
AL-Khafaji, M. A. K., & Hussan, M. S. M. (2018). General Type-2 Fuzzy Topological Spaces. Advances in Pure Mathematics, 08(09), 771–781. https://doi.org/10.4236/apm.2018.89047
Alkinani, H. H., Al-Hameedi, A. T. T., & Dunn-Norman, S. (2020). Data–Driven Decision–Making for Lost Circulation Treatments: A Machine Learning Approach. Energy and AI, 2, 100031. https://doi.org/10.1016/j.egyai.2020.100031
Attaullah, A., Rehman, N., Khan, A., & Santos-García, G. (2023). Fermatean Hesitant Fuzzy Rough Aggregation Operators and Their Applications in Multiple Criteria Group Decision-Making. Scientific Reports, 13(1), 6676. https://doi.org/10.
/s41598-023-28722-w
Ayub, S., Shabir, M., Riaz, M., Karaaslan, F., Marinkovic, D., & Vranjes, D. (2022). Linear Diophantine Fuzzy Rough Sets on Paired Universes with Multi Stage Decision Analysis. Axioms, 11(12), 686. https://doi.org/10.3390/
axioms11120686
Bobillo, F., & Straccia, U. (2012). Generalized Fuzzy Rough Description Logics. Information Sciences, 189, 43–62. https://doi.org/10.1016/j.ins.2011.10.
Chen, X., Zhou, B., Štilić, A., Stević, Ž., & Puška, A. (2023). A Fuzzy–Rough MCDM Approach for Selecting Green Suppliers in the Furniture Manufacturing Industry: A Case Study of Eco-Friendly Material Production. Sustainability, 15(13), 10745. https://doi.org/10.3390/su151310745
Chinnaswamy, A., & Srinivasan, R. (2017). Hybrid Information Gain Based Fuzzy Roughset Feature Selection in Cancer Microarray Data. 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), 1–6. https://doi.org/10.
/IPACT.2017.8244875
Dagdia, Z. C., Zarges, C., Beck, G., & Lebbah, M. (2020). A Scalable and Effective Rough Set Theory-Based Approach for Big Data Pre-Processing. Knowledge and Information Systems, 62(8), 3321–3386. https://doi.org/10.1007/s10115-020-01467-y
Del Giudice, V., De Paola, P., & Cantisani, G. (2017). Rough Set Theory for Real Estate Appraisals: An Application to Directional District of Naples. Buildings, 7(4), 12. https://doi.org/10.3390/
buildings7010012
Demin, A. V. (2020). Certainty and Uncertainty in Tax Law: Do Opposites Attract? Laws, 9(4), 30. https://doi.org/10.3390/laws9040030
Gao, L., & Wu, W. (2020). Relevance Assignation Feature Selection Method Based on Mutual Information for Machine Learning. Knowledge-Based Systems, 209, 106439. https://doi.org/10.
/j.knosys.2020.106439
González-Calatayud, V., Prendes-Espinosa, P., & Roig-Vila, R. (2021). Artificial Intelligence for Student Assessment: A Systematic Review. Applied Sciences, 11(12), 5467. https://doi.org/10.3390/
app11125467
Halder, B., Mitra, S., & Mitra, M. (2019). Development of Cardiac Disease Classifier Using Rough Set Decision System. In Abraham, A., Dutta, P., Mandal, J. K., Bhattacharya, A., & Dutta, S. (Eds.), Emerging Technologies in Data Mining and Information Security, 813, 775–785. Springer Singapore. https://doi.org/10.1007/978-981-13-1498-8_68
Hariri, R. H., Fredericks, E. M., & Bowers, K. M. (2019). Uncertainty in Big Data Analytics: Survey, Opportunities, and Challenges. Journal of Big Data, 6(1), 44. https://doi.org/10.1186/s40537-019-0206-3
Herbert, J. P., & Yao, J. (2009). Criteria for Choosing A Rough Set Model. Computers & Mathematics with Applications, 57(6), 908–918. https://doi.org/10.
/j.camwa.2008.10.043
Khairunnessa, F., Vazquez-Brust, D. A., & Yakovleva, N. (2021). A Review of the Recent Developments of Green Banking in Bangladesh. Sustainability, 13(4), 1904. https://doi.org/10.3390/su13041904
Kocornik-Mina, A., Bastida-Vialcanet, R., & Eguiguren Huerta, M. (2021). Social Impact of Value-Based Banking: Best Practises and a Continuity Framework. Sustainability, 13(14), 7681. https://doi.org/10.3390/su13147681
Kristanto, S. P., Bahtiar, R. S., Sembiring, M., Himawan, H., Samboteng, L., Hariyadi, H., & Suparya, I. K. (2021). Implementation of ML Rough Set in Determining Cases of Timely Graduation of Students. Journal of Physics: Conference Series, 1933(1), 012031. https://doi.org/10.1088/1742-6596/1933/1/012031
Kurniawan, H., Agustin, F., Yusfrizal, Y., & Ummi, K. (2018). Implementation Data Mining in Prediction of Sales Chips with Rough Set Method. 2018 6th International Conference on Cyber and IT Service Management (CITSM), 1–7. https://doi.org/10.
/CITSM.2018.8674280
Liu, L., Dou, Y., & Qiao, J. (2022). Evaluation Method of Highway Plant Slope Based on Rough Set Theory and Analytic Hierarchy Process: A Case Study in Taihang Mountain, Hebei, China. Mathematics, 10(8), 1264. https://doi.org/10.3390/math10081
Manurung, H., Ongko, E., Harahap, A. J., Hartono, H., Abdullah, D., Erliana, C. I., Sriadhi, S., Putra, A. H. P. K., Muslim, A. H., Nanuru, R. F., Saleh, A. A., Indahingwati, A., Kurniawan, C., Iswara, I. B. A., Hasibuan, A., Wuryani, E., Hadikurniawati, W., & Winarno, E. (2018). Designing Data Mining Applications with Rough Set Algorithm for Provision of Recommendations in the Selection of Training Topics on Online Learning. Journal of Physics: Conference Series, 1114, 012072. https://doi.org/10.1088/1742-6596/1114/1/012072
Nurhidayat, N., Defit, S., & Sumijan, S. (2020). Data Mining dalam Akurasi Tingkat Kelayakan Pakai terhadap Peralatan Perangkat Keras. Jurnal Informasi dan Teknologi, 83–88. https://doi.org/10.
/jidt.v2i3.67
Pelton, S. B. (2017). Correlation of University Comprehensive and National Certification Exam Scores for Medical Laboratory Science Students. American Society for Clinical Laboratory Science, 30(4), 240–246. https://doi.org/10.29074/ascls.30.
240
Pendrill, L. R. (2014). Using Measurement Uncertainty in Decision-Making and Conformity Assessment. Metrologia, 51(4), S206–S218. https://doi.org/10.
/0026-1394/51/4/S206
Pięta, P., & Szmuc, T. (2021). Applications of Rough Sets in Big Data Analysis: An Overview. https://doi.org/10.34768/AMCS-2021-0046
Pięta, P., Szmuc, T., & Kluza, K. (2019). Comparative Overview of Rough Set Toolkit Systems for Data Analysis. MATEC Web of Conferences, 252, 03019. https://doi.org/10.1051/matecconf/201925203019
Puška, A., Štilić, A., Nedeljković, M., Božanić, D., & Biswas, S. (2023). Integrating Fuzzy Rough Sets with LMAW and MABAC for Green Supplier Selection in Agribusiness. Axioms, 12(8), 746. https://doi.org/10.3390/axioms12080746
Qu, J., Bai, X., Gu, J., Taghizadeh-Hesary, F., & Lin, J. (2020). Assessment of Rough Set Theory in Relation to Risks Regarding Hydraulic Engineering Investment Decisions. Mathematics, 8(8), 1308. https://doi.org/10.3390/math8081308
Raharjo, M. R., & Windarto, A. P. (2021). Penerapan Machine Learning dengan Konsep Data Mining Rough Set (Prediksi Tingkat Pemahaman Mahasiswa terhadap Matakuliah). Jurnal Media Informatika Budidarma, 5(1), 317. https://doi.org/
30865/mib.v5i1.2745
Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/
1007/s42979-021-00592-x
Sianturi, F. A., Sijabat, P. I., & Sitohang, A. (2021). Application of the Rough Set Method to the Level of Customer Satisfaction on Service Quality. SinkrOn, 5(2), 251–259. https://doi.org/10.33395/
sinkron.v5i2.10863
Slim, H., & Nadeau, S. (2020). A Mixed Rough Sets/Fuzzy Logic Approach for Modelling Systemic Performance Variability with FRAM. Sustainability, 12(5), 1918. https://doi.org/10.3390
/su12051918
Swiecki, Z., Khosravi, H., Chen, G., Martinez-Maldonado, R., Lodge, J. M., Milligan, S., Selwyn, N., & Gašević, D. (2022). Assessment in the Age of Artificial Intelligence. Computers and Education: Artificial Intelligence, 3, 100075. https://doi.org/10.
/j.caeai.2022.100075
Swiniarski, R. W., & Skowron, A. (2003). Rough Set Methods in Feature Selection and Recognition. Pattern Recognition Letters, 24(6), 833–849. https://doi.org/10.1016/S0167-8655(02)00196-4
Wang, C., Fan, H., & Wu, T. (2023). Novel Rough Set Theory-Based Method for Epistemic Uncertainty Modeling, Analysis and Applications. Applied Mathematical Modelling, 113, 456–474. https://doi.
org/10.1016/j.apm.2022.09.002
Zhang, L., Zhan, J., & Yao, Y. (2020). Intuitionistic Fuzzy TOPSIS Method Based on CVPIFRS Models: An Application to Biomedical Problems. Information Sciences, 517, 315–339. https://doi.org/
1016/j.ins.2020.01.003
Zuhdi, I. (2022). Data Mining Menggunakan Metode Rough Set dalam Memprediksi Tingkat Penjualan Peralatan Komputer. Jurnal Informatika Ekonomi Bisnis, 142–147. https://doi.org/10.37034/infeb.
v4i4.159
Author Biographies
Retno Devita, Universitas Putra Indonesia YPTK Padang
Sarjon Defit, Universitas Putra Indonesia YPTK Padang
License
Copyright (c) 2024 Retno Devita, Sarjon Devit
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).