Investigation of Transmission and Reflection of Single Mode Fiber Bragg Grating

Authors

Dedi Irawan , Saktioto , Azhar , Dwi Hanto , Bambang Widiyatmoko

DOI:

10.29303/jppipa.v10i6.7209

Published:

2024-06-25

Issue:

Vol. 10 No. 6 (2024): June

Keywords:

Fiber optic, Reflection, Refraction, Single mode

Review

Downloads

How to Cite

Irawan, D., Saktioto, Azhar, Hanto, D., & Widiyatmoko, B. (2024). Investigation of Transmission and Reflection of Single Mode Fiber Bragg Grating. Jurnal Penelitian Pendidikan IPA, 10(6), 369–376. https://doi.org/10.29303/jppipa.v10i6.7209

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The use of Single Mode Fiber Bragg Grating (SMFBG) has been increasing in recent years due to its compact size, low cost, fast response and immunity to electromagnetic interference. It is commonly integrated into medical devices for long-distance light transmission and collection due to its high flexibility, low propagation loss, compatibility and tolerance to electromagnetic interference. SMFBG is a device made of thin glass material that is used as a medium for transmitting information in the form of light signals sourced from lasers or LEDs from one location to another. It consists of 3 main components, namely core with a certain grating, blanket (cladding) and jacket (coating). The advantage of optical fiber is that the data when transmitted is converted into light so as to reduce the risk of data damage. Other advantages include very small size, minimal interference with electromagnetic waves, resistance to temperature changes, attenuation when the transmission process is small enough, and large enough bandwidth. The orientation of this literature review is to understand the concept of optical fiber, the concept of reflection and refraction, and how light propagates in optical fiber.

References

Ansari, M. T. I., Raghuwanshi, S. K., & Kumar, S. (2023). Recent Advancement in Fiber-Optic-Based SPR Biosensor for Food Adulteration Detection - A Review. IEEE Transactions on Nanobioscience. https://doi.org/10.1109/TNB.2023.3278468

Azhar, Herfana, P., Nasir, M., Irawan, D., & Islami, N. (2021). Development of 3D Physics Learning Media using Augmented Reality for First-year Junior High School Students. Journal of Physics: Conference Series, 2049(1), 012036. https://doi.org/10.1088/1742-6596/2049/1/012036

Ballato, J., & Dragic, P. D. (2021). Glass: The carrier of light—Part II—A brief look into the future of optical fiber. International Journal of Applied Glass Science, 12(1), 3–24. https://doi.org/10.1111/ijag.15844

Campanella, C. E., Cuccovillo, A., Campanella, C., Yurt, A., & Passaro, V. M. N. (2018). Fibre Bragg Grating Based Strain Sensors: Review of Technology and Applications. Sensors, 18(9), 3115. https://doi.org/10.3390/s18093115

Efriyanda, O., Faiza, D., & Hadi, A. (2018). Analisis Kinerja Sistem Komunikasi Serat Optik dengan Menggunakan Metode Power Link Budget dan Rise Time Budget pada PT.Telkom (Studi Kasus Link Batusangkar – Lintau ). Voteteknika (Vocational Teknik Elektronika Dan Informatika). https://doi.org/10.24036/voteteknika.v2i2.4079

Eid, M. M. A. (2022). Optical fiber sensors: review of technology and applications. Indonesian Journal of Electrical Engineering and Computer Science, 25(2), 1038. https://doi.org/10.11591/ijeecs.v25.i2.pp1038-1046

Elsherif, M., Hassan, M. U., Yetisen, A. K., & Butt, H. (2019). Hydrogel optical fibers for continuous glucose monitoring. Biosensors and Bioelectronics, 137, 25–32. https://doi.org/10.1016/j.bios.2019.05.002

Fleming, J., Amietszajew, T., McTurk, E., Towers, D. P., Greenwood, D., & Bhagat, R. (2018). Development and evaluation of in-situ instrumentation for cylindrical Li-ion cells using fibre optic sensors. HardwareX, 3, 100–109. https://doi.org/10.1016/j.ohx.2018.04.001

Fon, R. C., Ndjiongue, A. R., Ouahada, K., & Abu-Mahfouz, A. M. (2023). Fibre optic-VLC versus laser-VLC: a review study. Photonic Network Communications, 46(1), 1–15. https://doi.org/10.1007/s11107-023-00997-z

Gurendrawati, E., Respati, D. K., Zairin, G. M., Suherman, Suparno, Pahala, I., Wibowo, A., Karyaningsih, R. P. D., Utaminingtyas, T. H., & Widyastuti, T. S. (2023). Pelatihan Teknik Penyusunan Studi Literatur Menggunakan VOSViewer dan Teknik Sitasi Menggunakan Zotero. Rahmatan Lil ’Alamin Journal of Community Services, 47–54. https://doi.org/10.20885/RLA.Vol3.iss1.art6

Hamdani, D., & Yuyu, A. (2018). Pengaturan Sistem Komunikasi Data Fiber Optik Dengan Menggunakan Router Mikrotik. Sainstech: Jurnal Penelitian Dan Pengkajian Sains Dan Teknologi, 26(1). https://doi.org/10.37277/stch.v26i1.63

Hasbun, J. E. (2018). On the optical path length in refracting media. American Journal of Physics, 86(4), 268–274. https://doi.org/10.1119/1.5013008

Hoseinian, M. S., & Bolorizadeh, M. A. (2019). Design and Simulation of a Highly Sensitive SPR Optical Fiber Sensor. Photonic Sensors, 9(1), 33–42. https://doi.org/10.1007/s13320-018-0508-7

Irawan, D., Ramadhan, K., Saktioto, S., & Marwin, A. (2022). Performance comparison of Topas chirped fiber bragg grating sensor with tanh and gaussian apodization. Indonesian Journal of Electrical Engineering and Computer Science, 26(3), 1477–1485. https://doi.org/10.11591/ijeecs.v26.i3.pp1477-1485

Irawan, D., Saktioto, & Ali, J. (2010). Linear and triangle order of NX3 optical directional couplers: variation coupling coefficient. In S. Yin & R. Guo (Eds.), Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IV (Vol. 7781, Issue July, p. 77810J). https://doi.org/10.1117/12.862573

Irawan, D., Saktioto, Ali, J., & Defrianto. (2011). Breakdown voltage effect on coupling ratio fusion fiber coupling. Physics Procedia, 19, 477–481. https://doi.org/10.1016/j.phpro.2011.06.195

Khan, T. H., & MacEachen, E. (2022). An Alternative Method of Interviewing: Critical Reflections on Videoconference Interviews for Qualitative Data Collection. International Journal of Qualitative Methods, 21, 1–12. https://doi.org/10.1177/16094069221090063

Khudyakov, D., Sosnin, M., Shorstkii, I., & Okpala, C. O. R. (2022). Cold filamentary microplasma pretreatment combined with infrared dryer: Effects on drying efficiency and quality attributes of apple slices. Journal of Food Engineering, 329, 111049. https://doi.org/10.1016/j.jfoodeng.2022.111049

Li, Y., Xin, H., Zhang, Y., & Li, B. (2021). Optical Fiber Technologies for Nanomanipulation and Biodetection: A Review. Journal of Lightwave Technology, 39(1), 251–262. https://doi.org/10.1109/JLT.2020.3023456

Löffler-Mang, M. (2012). Spektrometer. In Optische Sensorik. https://doi.org/10.1007/978-3-8348-8308-7_23

Losch, M. S., Kardux, F., Dankelman, J., Hendriks, B. H. W., Losch, M. S., Kardux, F., Dankelman, J., Hendriks, B. H. W., & Losch, M. S. (2022). Expert Review of Medical Devices Steering light in fiber-optic medical devices : a patent review Steering light in fiber-optic medical devices : a patent review. Expert Review of Medical Devices, 19(3), 259–272. https://doi.org/10.1080/17434440.2022.2054334

Luetjen, C., Hallsted, J., & Kleinert, M. (2013). Measuring the refractive index of thin transparent films using an extended cavity diode laser. American Journal of Physics, 81(12), 929–935. https://doi.org/10.1119/1.4821551

Monir, M. K., Uddin, M. S., & Sen, S. (2023). Design of a novel photonic crystal fiber and numerical analysis of sensitivity for the detection of illegal drugs in terahertz regime. Sensing and Bio-Sensing Research. https://doi.org/10.1016/j.sbsr.2023.100551

Mulkerns, N. M. C., Hoffmann, W. H., Ramos-Soriano, J., de la Cruz, N., Garcia-Millan, T., Harniman, R. L., Lindsay, I. D., Seddon, A. M., Galan, M. C., & Gersen, H. (2022). Measuring the refractive index and sub-nanometre surface functionalisation of nanoparticles in suspension. Nanoscale, 14(22), 8145–8152. https://doi.org/10.1039/D2NR00120A

Nsengiyumva, I., Mwangi, E., & Kamucha, G. (2022). A comparative study of chromatic dispersion compensation in 10 Gbps SMF and 40 Gbps OTDM systems using a cascaded Gaussian linear apodized chirped fibre Bragg grating design. Heliyon, 8(4), e09308. https://doi.org/10.1016/j.heliyon.2022.e09308

Pedrotti, F. L., Pedrotti, L. M., & Pedrotti, L. S. (2017). Introduction to Optics. Cambridge University Press. https://doi.org/10.1017/9781108552493

Rahmatulloh, M. A., Hanto, D., Yantidewi, M., Agitta Rianaris, & R.A. Firdaus. (2023). Analisis Redaman Fiber Optik dengan Menggunakan Pemodelan Software Optisystem. Jurnal Kolaboratif Sains, 6(7), 630–639. https://doi.org/10.56338/jks.v6i7.3795

Rashed, A. N. Z., Tabbour, M. S. F., & Vijayakumari, P. (2022). Numerical Analysis of Optical Properties Using Octagonal Shaped Photonic Crystal Fiber. Journal of Optical Communications, 43(4), 549–553. https://doi.org/10.1515/joc-2019-0013

Saktioto, T., Ramadhan, K., Soerbakti, Y., Syahputra, R. F., Irawan, D., & Okfalisa, O. (2021). Apodization sensor performance for TOPAS fiber Bragg grating. TELKOMNIKA (Telecommunication Computing Electronics and Control), 19(6), 1982. https://doi.org/10.12928/telkomnika.v19i6.21669

Salih, A. R. (2021). Design of Step-Index Multimode Optical Fiber. Journal of Physics: Conference Series, 1879(3). https://doi.org/10.1088/1742-6596/1879/3/032074

Silveira, M., Frizera, A., Leal-Junior, A., Ribeiro, D., Marques, C., Blanc, W., & R. Díaz, C. A. (2020). Transmission–Reflection Analysis in high scattering optical fibers: A comparison with single-mode optical fiber. Optical Fiber Technology, 58, 102303. https://doi.org/10.1016/j.yofte.2020.102303

Singal, T. L. (2016). Optical Fiber Communications. In Optical Fiber Communications: Principles and Applications. Cambridge University Press. https://doi.org/10.1017/9781316661505

Tian, Y., Zhao, M., Zhang, D., Ren, G., Wang, X., & Liu, Z. (2023). Research on Fiber Optic Vibration Sensor Based on Multi-mode Interference and Mach-Zehnder Interference. Bandaoti Guangdian/Semiconductor Optoelectronics. https://doi.org/10.16818/j.issn1001-5868.2022110504

Winzer, P. J., Neilson, D. T., & Chraplyvy, A. R. (2018). Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited]. Optics Express, 26(18), 24190. https://doi.org/10.1364/OE.26.024190

Yugay, V., Mekhtiyev, A., Madi, P., Neshina, Y., Alkina, A., Gazizov, F., Afanaseva, O., & Ilyashenko, S. (2022). Fiber-Optic System for Monitoring Pressure Changes on Mine Support Elements. Sensors, 22(5), 1735. https://doi.org/10.3390/s22051735

Zanoon, N. I. (2014). The Phenomenon of Total Internal Reflection and Acceleration of Light in Fiber Optics. International Journal of Computer Applications, 107(2), 19–24. https://doi.org/10.5120/18723-9951

Zhang, K., Li, J., Sun, S., Wang, J., & Yu, S. (2023). Optical system design of double-sided telecentric microscope with high numerical aperture and long working distance. Optics Express, 31(14), 23518. https://doi.org/10.1364/oe.496322

Zhao, Z., Dang, Y., & Tang, M. (2022). Advances in Multicore Fiber Grating Sensors. Photonics, 9(6), 381. https://doi.org/10.3390/photonics9060381

Author Biographies

Dedi Irawan, Universitas Riau

Saktioto, Universitas Riau, Pekanbaru

Azhar, Universitas Riau, Pekanbaru

Dwi Hanto, National Research and Innovation Agency, BRIN

Bambang Widiyatmoko, National Research and Innovation Agency, BRIN

License

Copyright (c) 2024 Dedi Irawan, Saktioto, Azhar, Dwi Hanto, Bambang Widiyatmoko

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).