Linking MDA Levels and Blood Glucose in Streptozotocin-Induced Rat Diabetes: Implications for Diabetic Complications and Therapeutic Strategies







Vol. 10 No. 6 (2024): June


Blood glucose, Diabetic complications, Diabetes melitus, MDA therapeutic strategies, Streptozotocin

Research Articles


How to Cite

Angie, E., Girsang, E., & Ikhtiari, R. (2024). Linking MDA Levels and Blood Glucose in Streptozotocin-Induced Rat Diabetes: Implications for Diabetic Complications and Therapeutic Strategies. Jurnal Penelitian Pendidikan IPA, 10(6), 2898–2905.


Download data is not yet available.


Metrics Loading ...


Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose levels resulting from insulin deficiency or resistance. Streptozotocin, a potent diabetogenic agent, is commonly employed to induce experimental diabetes by selectively damaging pancreatic beta cells, resulting in insulin deficiency and hyperglycemia. Elevated Malondialdehyde (MDA) levels, indicative of oxidative stress and lipid peroxidation, are closely linked to diabetic complications. This study aimed to investigate the association between MDA levels and blood glucose in Streptozotocin-induced rat diabetes, shedding light on potential therapeutic strategies. Spectrophotometric analysis was utilized to quantify MDA levels in rat tissues, providing insights into the extent of oxidative damage. The results revealed a significant correlation between MDA levels and blood glucose, highlighting the role of oxidative stress in diabetic pathogenesis. These findings underscore the importance of targeting oxidative stress in diabetes management to prevent complications. In conclusion, the study emphasizes the relevance of monitoring MDA levels as a biomarker for assessing oxidative stress in diabetic conditions and guiding therapeutic interventions.


Afzal, S., Abdul Manap, A. S., Attiq, A., Albokhadaim, I., Kandeel, M., & Alhojaily, S. M. (2023). From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Frontiers in Pharmacology, 14(October), 1–22.

Arabshomali, A., Bazzazzadehgan, S., Mahdi, F., & Shariat-Madar, Z. (2023). Potential Benefits of Antioxidant Phytochemicals in Type 2 Diabetes. Molecules, 28(20), 1–29.

Association, A. D. (2021). Facilitating behavior change and well-being to improve health outcomes: Standards of medical care in diabetes−2021. Diabetes Care, 44(Supplement_1), S53–S72.

Bencivenga, D., Arcadio, F., Piccirillo, A., Annunziata, M., Della Ragione, F., Cennamo, N., Borriello, A., Zeni, L., & Guida, L. (2023). Plasmonic optical fiber biosensor development for point-of-care detection of malondialdehyde as a biomarker of oxidative stress. Free Radical Biology and Medicine, 199, 177–188.

Bhatti, J. S., Sehrawat, A., Mishra, J., Sidhu, I. S., Navik, U., Khullar, N., Kumar, S., Bhatti, G. K., & Reddy, P. H. (2022). Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184, 114–134.

Caturano, A., D’Angelo, M., Mormone, A., Russo, V., Mollica, M. P., Salvatore, T., Galiero, R., Rinaldi, L., Vetrano, E., Marfella, R., Monda, M., Giordano, A., & Sasso, F. C. (2023). Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Current Issues in Molecular Biology, 45(8), 6651–6666.

Chae, S. Y., Kim, Y., & Park, C. W. (2023). Oxidative Stress Induced by Lipotoxicity and Renal Hypoxia in Diabetic Kidney Disease and Possible Therapeutic Interventions: Targeting the Lipid Metabolism and Hypoxia. Antioxidants, 12(12), 1–28.

Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina, D., & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 11, 1158198.

Dilworth, L., Facey, A., & Omoruyi, F. (2021). Diabetes mellitus and its metabolic complications: The role of adipose tissues. International Journal of Molecular Sciences, 22(14), 1–18.

Dugbartey, G. J., Wonje, Q. L., Alornyo, K. K., Robertson, L., Adams, I., Boima, V., & Mensah, S. D. (2022). Combination Therapy of Alpha-Lipoic Acid, Gliclazide and Ramipril Protects Against Development of Diabetic Cardiomyopathy via Inhibition of TGF-β/Smad Pathway. Frontiers in Pharmacology, 13, 1–15.

Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21(17), 6275.

González, P., Lozano, P., Ros, G., & Solano, F. (2023). Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. International Journal of Molecular Sciences, 24(11), 1–35.

Guan, H., Tian, J., Wang, Y., Niu, P., Zhang, Y., Zhang, Y., Fang, X., Miao, R., Yin, R., & Tong, X. (2024). Advances in secondary prevention mechanisms of macrovascular complications in type 2 diabetes mellitus patients: A comprehensive review. European Journal of Medical Research, 29(1), 152.

Joseph, J. J., Deedwania, P., Acharya, T., Aguilar, D., Bhatt, D. L., Chyun, D. A., Di Palo, K. E., Golden, S. H., & Sperling, L. S. (2022). Comprehensive Management of Cardiovascular Risk Factors for Adults with Type 2 Diabetes: A Scientific Statement from the American Heart Association. In Circulation (Vol. 145, Issue 9).

Klupa, T., Czupryniak, L., Dzida, G., Fichna, P., Jarosz-Chobot, P., Gumprecht, J., Mysliwiec, M., Szadkowska, A., Bomba-Opon, D., Czajkowski, K., Malecki, M. T., & Zozulinska-Ziolkiewicz, D. A. (2023). Expanding the Role of Continuous Glucose Monitoring in Modern Diabetes Care Beyond Type 1 Disease. Diabetes Therapy, 14(8), 1241–1266.

Kong, J., Fan, R., Zhang, Y., Jia, Z., Zhang, J., Pan, H., & Wang, Q. (2024). Oxidative stress in the brain–lung crosstalk: Cellular and molecular perspectives. Frontiers in Aging Neuroscience, 16, 1389454.

Li, Y., Liu, Y., Liu, S., Gao, M., Wang, W., Chen, K., Huang, L., & Liu, Y. (2023). Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduction and Targeted Therapy, 8(1), 152.

Liu, J., Han, X., Zhang, T., Tian, K., Li, Z., & Luo, F. (2023). Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: From mechanism to therapy. Journal of Hematology & Oncology, 16(1), 116.

Liu, J., Zhang, Y., Tian, Y., Huang, W., Tong, N., & Fu, X. (2022). Integrative biology of extracellular vesicles in diabetes mellitus and diabetic complications. Theranostics, 12(3), 1342–1372.

Logette, E., Lorin, C., Favreau, C., Oshurko, E., Coggan, J. S., Casalegno, F., Sy, M. F., Monney, C., Bertschy, M., Delattre, E., Fonta, P. A., Krepl, J., Schmidt, S., Keller, D., Kerrien, S., Scantamburlo, E., Kaufmann, A. K., & Markram, H. (2021). A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Frontiers in Public Health, 9(July), 1–53.

Mas-Bargues, C., Escrivá, C., Dromant, M., Borrás, C., & Viña, J. (2021). Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Archives of Biochemistry and Biophysics, 709, 1–7.

Olufunmilayo, E. O., Gerke-Duncan, M. B., & Holsinger, R. M. D. (2023). Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants, 12(2), 517.

Oshina, I., & Spigulis, J. (2021). Beer–Lambert law for optical tissue diagnostics: Current state of the art and the main limitations. Journal of Biomedical Optics, 26(10), 1–17.

Padhi, S., Nayak, A. K., & Behera, A. (2020). Type II diabetes mellitus: A review on recent drug based therapeutics. Biomedicine and Pharmacotherapy, 131, 1–23.

Park, J.-S., Rustamov, N., & Roh, Y. S. (2023). The Roles of NFR2-Regulated Oxidative Stress and Mitochondrial Quality Control in Chronic Liver Diseases. Antioxidants, 12(11), 1928.

Quiroz, J., & Yazdanyar, A. (2021). Animal models of diabetic retinopathy. Annals of Translational Medicine, 9(15), 1–15.

Ram, C., Gairola, S., Verma, S., Mugale, M. N., Bonam, S. R., Murty, U. S., & Sahu, B. D. (2023). Biochanin A Ameliorates Nephropathy in High-Fat Diet/Streptozotocin-Induced Diabetic Rats: Effects on NF-kB/NLRP3 Axis, Pyroptosis, and Fibrosis. Antioxidants, 12(5), 1–20.

Ramalho, A., & Petrica, J. (2023). The Quiet Epidemic: An Overview of Emerging Qualitative Research Trends on Sedentary Behavior in Aging Populations. Healthcare (Switzerland), 11(15), 1–31.

Raoufinia, R., Rahimi, H. R., Saburi, E., & Moghbeli, M. (2024). Advances and challenges of the cell-based therapies among diabetic patients. Journal of Translational Medicine, 22(1), 435.

Roep, B. O., Thomaidou, S., van Tienhoven, R., & Zaldumbide, A. (2021). Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nature Reviews Endocrinology, 17(3), 150–161.

Shaban, M. M., Sharaa, H. M., Amer, F. G. M., & Shaban, M. (2024). Effect of digital based nursing intervention on knowledge of self-care behaviors and self-efficacy of adult clients with diabetes. BMC Nursing, 23(1), 130.

Sidorova, Y., & Domanskyi, A. (2020). Detecting oxidative stress biomarkers in neurodegenerative disease models and patients. Methods and Protocols, 3(4), 1–14.

Su, J., Luo, Y., Hu, S., Tang, L., & Ouyang, S. (2023). Advances in Research on Type 2 Diabetes Mellitus Targets and Therapeutic Agents. International Journal of Molecular Sciences, 24(17), 1–28.

Syeda, U. S. A., Battillo, D., Visaria, A., & Malin, S. K. (2023). The importance of exercise for glycemic control in type 2 diabetes. American Journal of Medicine Open, 9, 100031.

Tang, X., Yang, L., Miao, Y., Ha, W., Li, Z., & Mi, D. (2023). Angelica polysaccharides relieve blood glucose levels in diabetic KKAy mice possibly by modulating gut microbiota: An integrated gut microbiota and metabolism analysis. BMC Microbiology, 23(1), 1–16.

Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64(2), 178–189.

Wróbel-Nowicka, K., Wojciechowska, C., Jacheć, W., Zalewska, M., & Romuk, E. (2024). The Role of Oxidative Stress and Inflammatory Parameters in Heart Failure. Medicina, 60(5), 760.

Wszola, M., Klak, M., Kosowska, A., Tymicki, G., Berman, A., Adamiok-Ostrowska, A., Olkowska-Truchanowicz, J., Uhrynowska-Tyszkiewicz, I., & Kaminski, A. (2021). Streptozotocin-induced diabetes in a mouse model (Balb/c) is not an effective model for research on transplantation procedures in the treatment of type 1 diabetes. Biomedicines, 9(12), 1–18.

Zhang, J., Yakovlieva, L., de Haan, B. J., de Vos, P., Minnaard, A. J., Witte, M. D., & Walvoort, M. T. C. (2020). Selective modification of streptozotocin at the C3 position to improve its bioactivity as antibiotic and reduce its cytotoxicity towards insulin-producing β cells. Antibiotics, 9(4), 1–11.

Zhu, B. T. (2022). Pathogenic Mechanism of Autoimmune Diabetes Mellitus in Humans: Potential Role of Streptozotocin-Induced Selective Autoimmunity against Human Islet β-Cells. Cells, 11(3), 1–22.

Author Biographies

Evelyn Angie, Universitas Prima Indonesia

Ermi Girsang, Universitas Prima Indonesia

Refi Ikhtiari, Universitas Prima Indonesia


Copyright (c) 2024 Evelyn Angie, Ermi Girsang, Refi Ikhtiari

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).