Linking MDA Levels and Blood Glucose in Streptozotocin-Induced Rat Diabetes: Implications for Diabetic Complications and Therapeutic Strategies
DOI:
10.29303/jppipa.v10i6.7220Published:
2024-06-20Issue:
Vol. 10 No. 6 (2024): JuneKeywords:
Blood glucose, Diabetic complications, Diabetes melitus, MDA therapeutic strategies, StreptozotocinResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose levels resulting from insulin deficiency or resistance. Streptozotocin, a potent diabetogenic agent, is commonly employed to induce experimental diabetes by selectively damaging pancreatic beta cells, resulting in insulin deficiency and hyperglycemia. Elevated Malondialdehyde (MDA) levels, indicative of oxidative stress and lipid peroxidation, are closely linked to diabetic complications. This study aimed to investigate the association between MDA levels and blood glucose in Streptozotocin-induced rat diabetes, shedding light on potential therapeutic strategies. Spectrophotometric analysis was utilized to quantify MDA levels in rat tissues, providing insights into the extent of oxidative damage. The results revealed a significant correlation between MDA levels and blood glucose, highlighting the role of oxidative stress in diabetic pathogenesis. These findings underscore the importance of targeting oxidative stress in diabetes management to prevent complications. In conclusion, the study emphasizes the relevance of monitoring MDA levels as a biomarker for assessing oxidative stress in diabetic conditions and guiding therapeutic interventions.
References
Afzal, S., Abdul Manap, A. S., Attiq, A., Albokhadaim, I., Kandeel, M., & Alhojaily, S. M. (2023). From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Frontiers in Pharmacology, 14(October), 1–22. https://doi.org/10.3389/fphar.2023.1269581
Arabshomali, A., Bazzazzadehgan, S., Mahdi, F., & Shariat-Madar, Z. (2023). Potential Benefits of Antioxidant Phytochemicals in Type 2 Diabetes. Molecules, 28(20), 1–29. https://doi.org/10.3390/molecules28207209
Association, A. D. (2021). Facilitating behavior change and well-being to improve health outcomes: Standards of medical care in diabetes−2021. Diabetes Care, 44(Supplement_1), S53–S72. https://doi.org/10.2337/dc21-S005
Bencivenga, D., Arcadio, F., Piccirillo, A., Annunziata, M., Della Ragione, F., Cennamo, N., Borriello, A., Zeni, L., & Guida, L. (2023). Plasmonic optical fiber biosensor development for point-of-care detection of malondialdehyde as a biomarker of oxidative stress. Free Radical Biology and Medicine, 199, 177–188. https://doi.org/10.1016/j.freeradbiomed.2023.02.020
Bhatti, J. S., Sehrawat, A., Mishra, J., Sidhu, I. S., Navik, U., Khullar, N., Kumar, S., Bhatti, G. K., & Reddy, P. H. (2022). Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184, 114–134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019
Caturano, A., D’Angelo, M., Mormone, A., Russo, V., Mollica, M. P., Salvatore, T., Galiero, R., Rinaldi, L., Vetrano, E., Marfella, R., Monda, M., Giordano, A., & Sasso, F. C. (2023). Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Current Issues in Molecular Biology, 45(8), 6651–6666. https://doi.org/10.3390/cimb45080420
Chae, S. Y., Kim, Y., & Park, C. W. (2023). Oxidative Stress Induced by Lipotoxicity and Renal Hypoxia in Diabetic Kidney Disease and Possible Therapeutic Interventions: Targeting the Lipid Metabolism and Hypoxia. Antioxidants, 12(12), 1–28. https://doi.org/10.3390/antiox12122083
Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina, D., & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 11, 1158198. https://doi.org/10.3389/fchem.2023.1158198
Dilworth, L., Facey, A., & Omoruyi, F. (2021). Diabetes mellitus and its metabolic complications: The role of adipose tissues. International Journal of Molecular Sciences, 22(14), 1–18. https://doi.org/10.3390/ijms22147644
Dugbartey, G. J., Wonje, Q. L., Alornyo, K. K., Robertson, L., Adams, I., Boima, V., & Mensah, S. D. (2022). Combination Therapy of Alpha-Lipoic Acid, Gliclazide and Ramipril Protects Against Development of Diabetic Cardiomyopathy via Inhibition of TGF-β/Smad Pathway. Frontiers in Pharmacology, 13, 1–15. https://doi.org/10.3389/fphar.2022.850542
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21(17), 6275. https://doi.org/10.3390/ijms21176275
González, P., Lozano, P., Ros, G., & Solano, F. (2023). Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. International Journal of Molecular Sciences, 24(11), 1–35. https://doi.org/10.3390/ijms24119352
Guan, H., Tian, J., Wang, Y., Niu, P., Zhang, Y., Zhang, Y., Fang, X., Miao, R., Yin, R., & Tong, X. (2024). Advances in secondary prevention mechanisms of macrovascular complications in type 2 diabetes mellitus patients: A comprehensive review. European Journal of Medical Research, 29(1), 152. https://doi.org/10.1186/s40001-024-01739-1
Joseph, J. J., Deedwania, P., Acharya, T., Aguilar, D., Bhatt, D. L., Chyun, D. A., Di Palo, K. E., Golden, S. H., & Sperling, L. S. (2022). Comprehensive Management of Cardiovascular Risk Factors for Adults with Type 2 Diabetes: A Scientific Statement from the American Heart Association. In Circulation (Vol. 145, Issue 9). https://doi.org/10.1161/CIR.0000000000001040
Klupa, T., Czupryniak, L., Dzida, G., Fichna, P., Jarosz-Chobot, P., Gumprecht, J., Mysliwiec, M., Szadkowska, A., Bomba-Opon, D., Czajkowski, K., Malecki, M. T., & Zozulinska-Ziolkiewicz, D. A. (2023). Expanding the Role of Continuous Glucose Monitoring in Modern Diabetes Care Beyond Type 1 Disease. Diabetes Therapy, 14(8), 1241–1266. https://doi.org/10.1007/s13300-023-01431-3
Kong, J., Fan, R., Zhang, Y., Jia, Z., Zhang, J., Pan, H., & Wang, Q. (2024). Oxidative stress in the brain–lung crosstalk: Cellular and molecular perspectives. Frontiers in Aging Neuroscience, 16, 1389454. https://doi.org/10.3389/fnagi.2024.1389454
Li, Y., Liu, Y., Liu, S., Gao, M., Wang, W., Chen, K., Huang, L., & Liu, Y. (2023). Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduction and Targeted Therapy, 8(1), 152. https://doi.org/10.1038/s41392-023-01400-z
Liu, J., Han, X., Zhang, T., Tian, K., Li, Z., & Luo, F. (2023). Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: From mechanism to therapy. Journal of Hematology & Oncology, 16(1), 116. https://doi.org/10.1186/s13045-023-01512-7
Liu, J., Zhang, Y., Tian, Y., Huang, W., Tong, N., & Fu, X. (2022). Integrative biology of extracellular vesicles in diabetes mellitus and diabetic complications. Theranostics, 12(3), 1342–1372. https://doi.org/10.7150/thno.65778
Logette, E., Lorin, C., Favreau, C., Oshurko, E., Coggan, J. S., Casalegno, F., Sy, M. F., Monney, C., Bertschy, M., Delattre, E., Fonta, P. A., Krepl, J., Schmidt, S., Keller, D., Kerrien, S., Scantamburlo, E., Kaufmann, A. K., & Markram, H. (2021). A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Frontiers in Public Health, 9(July), 1–53. https://doi.org/10.3389/fpubh.2021.695139
Mas-Bargues, C., Escrivá, C., Dromant, M., Borrás, C., & Viña, J. (2021). Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Archives of Biochemistry and Biophysics, 709, 1–7. https://doi.org/10.1016/j.abb.2021.108941
Olufunmilayo, E. O., Gerke-Duncan, M. B., & Holsinger, R. M. D. (2023). Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants, 12(2), 517. https://doi.org/10.3390/antiox12020517
Oshina, I., & Spigulis, J. (2021). Beer–Lambert law for optical tissue diagnostics: Current state of the art and the main limitations. Journal of Biomedical Optics, 26(10), 1–17. https://doi.org/10.1117/1.jbo.26.10.100901
Padhi, S., Nayak, A. K., & Behera, A. (2020). Type II diabetes mellitus: A review on recent drug based therapeutics. Biomedicine and Pharmacotherapy, 131, 1–23. https://doi.org/10.1016/j.biopha.2020.110708
Park, J.-S., Rustamov, N., & Roh, Y. S. (2023). The Roles of NFR2-Regulated Oxidative Stress and Mitochondrial Quality Control in Chronic Liver Diseases. Antioxidants, 12(11), 1928. https://doi.org/10.3390/antiox12111928
Quiroz, J., & Yazdanyar, A. (2021). Animal models of diabetic retinopathy. Annals of Translational Medicine, 9(15), 1–15. https://doi.org/10.21037/atm-20-6737
Ram, C., Gairola, S., Verma, S., Mugale, M. N., Bonam, S. R., Murty, U. S., & Sahu, B. D. (2023). Biochanin A Ameliorates Nephropathy in High-Fat Diet/Streptozotocin-Induced Diabetic Rats: Effects on NF-kB/NLRP3 Axis, Pyroptosis, and Fibrosis. Antioxidants, 12(5), 1–20. https://doi.org/10.3390/antiox12051052
Ramalho, A., & Petrica, J. (2023). The Quiet Epidemic: An Overview of Emerging Qualitative Research Trends on Sedentary Behavior in Aging Populations. Healthcare (Switzerland), 11(15), 1–31. https://doi.org/10.3390/healthcare11152215
Raoufinia, R., Rahimi, H. R., Saburi, E., & Moghbeli, M. (2024). Advances and challenges of the cell-based therapies among diabetic patients. Journal of Translational Medicine, 22(1), 435. https://doi.org/10.1186/s12967-024-05226-3
Roep, B. O., Thomaidou, S., van Tienhoven, R., & Zaldumbide, A. (2021). Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nature Reviews Endocrinology, 17(3), 150–161. https://doi.org/10.1038/s41574-020-00443-4
Shaban, M. M., Sharaa, H. M., Amer, F. G. M., & Shaban, M. (2024). Effect of digital based nursing intervention on knowledge of self-care behaviors and self-efficacy of adult clients with diabetes. BMC Nursing, 23(1), 130. https://doi.org/10.1186/s12912-024-01787-2
Sidorova, Y., & Domanskyi, A. (2020). Detecting oxidative stress biomarkers in neurodegenerative disease models and patients. Methods and Protocols, 3(4), 1–14. https://doi.org/10.3390/mps3040066
Su, J., Luo, Y., Hu, S., Tang, L., & Ouyang, S. (2023). Advances in Research on Type 2 Diabetes Mellitus Targets and Therapeutic Agents. International Journal of Molecular Sciences, 24(17), 1–28. https://doi.org/10.3390/ijms241713381
Syeda, U. S. A., Battillo, D., Visaria, A., & Malin, S. K. (2023). The importance of exercise for glycemic control in type 2 diabetes. American Journal of Medicine Open, 9, 100031. https://doi.org/10.1016/j.ajmo.2023.100031
Tang, X., Yang, L., Miao, Y., Ha, W., Li, Z., & Mi, D. (2023). Angelica polysaccharides relieve blood glucose levels in diabetic KKAy mice possibly by modulating gut microbiota: An integrated gut microbiota and metabolism analysis. BMC Microbiology, 23(1), 1–16. https://doi.org/10.1186/s12866-023-03029-y
Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64(2), 178–189. https://doi.org/10.1016/j.ecoenv.2005.03.013
Wróbel-Nowicka, K., Wojciechowska, C., Jacheć, W., Zalewska, M., & Romuk, E. (2024). The Role of Oxidative Stress and Inflammatory Parameters in Heart Failure. Medicina, 60(5), 760. https://doi.org/10.3390/medicina60050760
Wszola, M., Klak, M., Kosowska, A., Tymicki, G., Berman, A., Adamiok-Ostrowska, A., Olkowska-Truchanowicz, J., Uhrynowska-Tyszkiewicz, I., & Kaminski, A. (2021). Streptozotocin-induced diabetes in a mouse model (Balb/c) is not an effective model for research on transplantation procedures in the treatment of type 1 diabetes. Biomedicines, 9(12), 1–18. https://doi.org/10.3390/biomedicines9121790
Zhang, J., Yakovlieva, L., de Haan, B. J., de Vos, P., Minnaard, A. J., Witte, M. D., & Walvoort, M. T. C. (2020). Selective modification of streptozotocin at the C3 position to improve its bioactivity as antibiotic and reduce its cytotoxicity towards insulin-producing β cells. Antibiotics, 9(4), 1–11. https://doi.org/10.3390/antibiotics9040182
Zhu, B. T. (2022). Pathogenic Mechanism of Autoimmune Diabetes Mellitus in Humans: Potential Role of Streptozotocin-Induced Selective Autoimmunity against Human Islet β-Cells. Cells, 11(3), 1–22. https://doi.org/10.3390/cells11030492
Author Biographies
Evelyn Angie, Universitas Prima Indonesia
Ermi Girsang, Universitas Prima Indonesia
Refi Ikhtiari, Universitas Prima Indonesia
License
Copyright (c) 2024 Evelyn Angie, Ermi Girsang, Refi Ikhtiari
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).