Effect of Microbial Consortium Application on Growth And Yield of Oryza sativa L.

Authors

Aris Aksarah , Arfan , Lisa Indriani Bangkele , Zainal , Fahri , Mukhlis

DOI:

10.29303/jppipa.v10i7.7272

Published:

2024-07-25

Issue:

Vol. 10 No. 7 (2024): July

Keywords:

Consortium, Hollow Grains, Microbes, Oryza sativa, Weight 1000 Seeds

Research Articles

Downloads

How to Cite

Aksarah, A., Arfan, Bangkele, L. I., Zainal, Fahri, & Mukhlis. (2024). Effect of Microbial Consortium Application on Growth And Yield of Oryza sativa L. Jurnal Penelitian Pendidikan IPA, 10(7), 3569–3577. https://doi.org/10.29303/jppipa.v10i7.7272

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

A group of microorganisms (bacteria, viruses, fungi, and other microbes) working together to perform a specific task is called a consortium. This study aims to study and determine the growth and yield response of rice plants to the application of a consortium of phyllosphere microbes Fm48 and rhizosphere microbes R15. This research has been conducted since from August to November 2021 in the rice fields of Boya Baliase Village, Marawola District, Sigi Regency, Central Sulawesi Province. This study used a one-factor randomized block design method with grouping based on plot height. The treatment that was tried consisted of four levels, that is: Control = Without applied microbes, Fm48 = Applied a consortium of phyllosphere microbes Fm48, R15 = Applied a consortium of rhizosphere microbes R15 and Fm48R15= Applied a consortium of phyllosphere microbes Fm48 and rhizosphere microbes R15. To determine the effect of the treatment being tested, a variance analysis was carried out. Analysis of variance which showed a significant effect, further test was carried out for LSD α = 0.5. The results showed that the treatment of various consortiums of phyllosphere microbes Fm48 and R15 rhizosphere microbes had no significant effect on growth parameters but had a significant effect on the number of hollow grains and grain weight per 1000 rice grains. The consortium of phyllosphere microbes Fm48 and rhizosphere microbes R15 gave the best results for the lowest number of hollow grains and the highest grain weight per 1000 rice grains.

References

Afanador-Barajas, L. N., Navarro-Noya, Y. E., Luna-Guido, M. L., & Dendooven, L. (2021). Impact of a bacterial consortium on the soil bacterial community structure and maize (Zea mays L.) cultivation. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-92517-0

Agbavor, C., Mirza, B. S., & Wait, A. (2022). The Effects of Phyllosphere Bacteria on Plant Physiology and Growth of Soybean Infected with Pseudomonas syringae. Plants, 11(19). https://doi.org/10.3390/plants11192634

Ahmad, G., Nishat, Y., Haris, M., & Danish, M. (2019). Plant Microbe Interface. Switzerland: Springer. https://doi.org/10.1007/978-3-030-19831-2

Al-Banna, M. Z., & Arifuddin, W. (2021). Potensi Bakteri Asal Bambu dalam Memproduksi Asam Indol Asetat (IAA). Agrosainstek: Jurnal Ilmu Dan Teknologi Pertanian, 5(1), 72–80. https://doi.org/10.33019/agrosainstek.v5i1.233

Allamah, A., Hapsoh, H., Wawan, W., & Dini, I. R. (2018). The Growth and Yield of Rice (Oryza sativa L.) with Organic and Inorganic Fertilizer Application by Cellulolytic Microbes in Peat. Indonesian Journal of Agricultural Research, 1(3), 295–306. https://doi.org/10.32734/injar.v1i3.472

Amaria, W., Kasim, N. N., & Munif, A. (2019). Kelimpahan Populasi Bakteri Filosfer, Rizosfer Dan Endofit Tanaman Kemiri Sunan (Reutealis Trisperma (Blanco) Airy Shaw), Serta Potensinya Sebagai Biokontrol. TABARO, 3(1), 305–317. http://dx.doi.org/10.35914/tabaro.v3i1.200

Artawan, P. A., Ete, A., & Syamsiar. (2019). Efektivitas Mikroba Rizosfer Terhadap Hasil Tanaman Padi Gogo Lokal (Oryza sativa L .). J. Agrotekbis, 7(5), 590–601. Retrieved from http://jurnal.faperta.untad.ac.id/index.php/agrotekbis/article/view/561

Bustamam, H., Hartal, H., Wahyuni, H., & Gusmara, H. (2022). The Effectiveness of the Organic Fertilizer Formula of the PGPR and Biocontrol Agents Consortium on the Growth of Leeks and Reduction of Soft Rot Disease. KnE Life Sciences, 2022, 193–205. https://doi.org/10.18502/kls.v7i3.11120

Duncker, K. E., Holmes, Z. A., & You, L. (2021). Engineered microbial consortia: strategies and applications. Microbial Cell Factories, 20(1), 1–13. https://doi.org/10.1186/s12934-021-01699-9

Elita, N., Harmailis, H., Erlinda, R., & Susila, E. (2021). Pengaruh Aplikasi Trichoderma spp. Indigenous terhadap Hasil Padi Varietas Junjuang Menggunakan System of Rice Intensification. Jurnal Tanah Dan Iklim, 45(1), 79. https://doi.org/10.21082/jti.v45n1.2021.79-89

Fathi, A. (2022). Role of nitrogen (N) in plant growth, photosynthesis pigments, and N use efficiency: A review. Agrisost, 28, 1–8. https://doi.org/10.5281/zenodo.7143588

Gamalero, E., & Glick, B. R. (2022). Recent Advances in Bacterial Amelioration of Plant Drought and Salt Stress. Biology, 11(3), 1–26. https://doi.org/10.3390/biology11030437

Griffiths, H. M., Ashton, L. A., Parr, C. L., & Eggleton, P. (2021). The impact of invertebrate decomposers on plants and soil. New Phytologist, 231(6), 2142–2149. https://doi.org/10.1111/nph.17553

Hapsoh, H., Dini, I. R., Salbiah, D., & Kusmiati, D. (2019). Growth and Pepper Yields (Capsicum annuum L.) by Giving a Formulation of Biological Fertilizer of Cellulolytic Bacteria Based on Organic Liquid Waste. Journal of Physics: Conference Series, 1351(1). https://doi.org/10.1088/1742-6596/1351/1/012097

Hashem, A., Tabassum, B., & Fathi Abd_Allah, E. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004

Hassani, M. A., Durán, P., & Hacquard, S. (2018). Microbial interactions within the plant holobiont. Microbiome, 6(1), 58. https://doi.org/10.1186/s40168-018-0445-0

He, Y. H., Adkar-Purushothama, C. R., Ito, T., Shirakawa, A., Yamamoto, H., Kashiwagi, A., Tatewaki, A., Fujibayashi, M., Sugiyama, S., Yaginuma, K., Akahira, T., Yamamoto, S., Tsushima, S., Matsushita, Y., & Sano, T. (2021). Microbial diversity in the phyllosphere and rhizosphere of an apple orchard managed under prolonged “natural farming” practices. Microorganisms, 9(10). https://doi.org/10.3390/microorganisms9102056

Ikhsani, D., Hindersah, R., & Herdiyantoro, D. (2018). Pertumbuhan Tanaman Kacang Tanah (Arachis hypogea L. Merril) Setelah Aplikasi Azotobacter chroococcum Dan Pupuk NPK. Agrologia, 7(1), 1–8. https://doi.org/10.30598/a.v7i1.351

Irawati, W., Pinontoan, R., Mouretta, B., & Yuwono, T. (2022). The potential of copper-resistant bacteria Acinetobacter sp. strain CN5 in decolorizing dyes. Biodiversitas, 23(2), 680–686. https://doi.org/10.13057/biodiv/d230212

Joshi, H. C., Prakash, O., Nautiyal, M. K., Mahapatra, B. S., & Guru, S. K. (2019). A Comparison between the Grain Quality Parameters of Rice Grown under Organic and Inorganic Production System. Universal Journal of Plant Science, 7(2), 19–27. https://doi.org/10.13189/ujps.2019.070201

Kalay, A. M., Kesaulya, H., Talahaturuson, A., Rehatta, H., & Hindersah, R. (2020). Aplikasi Pupuk Hayati Konsorsium Strain Bacillus sp dengan Berbeda Konsentrasi dan Cara Pemberian Terhadap Pertumbuhan Bibit Pala (Myristica fragrans Houtt). Agrologia, 9(1). https://doi.org/10.30598/a.v9i1.1060

Khalifa, A. Y. Z., & Aldayel, M. F. (2022). Isolation and characterization of Klebsiella oxytoca from the rhizosphere of Lotus corniculatus and its biostimulating features. Brazilian Journal of Biology, 82, 1–7. https://doi.org/10.1590/1519-6984.266395

Kisková, J., Juhás, A., Galušková, S., Maliničová, L., Kolesárová, M., Piknová, M., & Pristaš, P. (2023). Antibiotic Resistance and Genetic Variability of Acinetobacter spp. from Wastewater Treatment Plant in Kokšov-Bakša (Košice, Slovakia). Microorganisms, 11(4). https://doi.org/10.3390/microorganisms11040840

Krestini, E. H., Susilawati, A., & Hermanto, C. (2020). Effect of NPK fertilizer and microbial consortium to growth and production of garlic (Allium sativum L.). BIO Web of Conferences, 20, 03010. https://doi.org/10.1051/bioconf/20202003010

Lee, J., Kim, S., Jung, H., Koo, B. K., Han, J. A., & Lee, H. S. (2023). Exploiting Bacterial Genera as Biocontrol Agents: Mechanisms, Interactions and Applications in Sustainable Agriculture. Journal of Plant Biology, 0123456789. https://doi.org/10.1007/s12374-023-09404-6

Lestari, R. H. S., Tirajoh, S., Rumbarar, M. K., & Thamrin, M. (2021). Responses of rice new superior varieties to the application of biofertilizers and plant system in Jayapura. IOP Conference Series: Earth and Environmental Science, 733(1). https://doi.org/10.1088/1755-1315/733/1/012070

Liu, L., Cui, S., Qin, M., Chen, L., Yin, D., Guo, X., Li, H., & Zheng, G. (2022). Effects of Continuous Ridge Tillage at Two Fertilizer Depths on Microbial Community Structure and Rice Yield. Agriculture (Switzerland), 12(7). https://doi.org/10.3390/agriculture12070923

Misra, S., & Chauhan, P. S. (2020). ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech, 10(3), 1–14. https://doi.org/10.1007/s13205-020-2104-y

Overbeek, W., Jeanne, T., Hogue, R., & Smith, D. L. (2021). Effects of Microbial Consortia, Applied as Fertilizer Coating, on Soil and Rhizosphere Microbial Communities and Potato Yield. Frontiers in Agronomy, 3, 1–13. https://doi.org/10.3389/fagro.2021.714700

O’Callaghan, M., Ballard, R. A., & Wright, D. (2022). Soil microbial inoculants for sustainable agriculture: Limitations and opportunities. Soil Use and Management, 38(3), 1340–1369. https://doi.org/10.1111/sum.12811

Pas, A. A., Sopandie, D., Santosa, D. A., Agroteknologi, P. S., Pertanian, F., Alkhairaat, U., & Alkhairaat, P. U. (2018). Eksplorasi konsorsium mikrob filosfer dan rizosfer asal berbagai ekosistem di Kabupaten Sigi Provinsi Sulawesi Tengah. Jurnal Agrotech, 8(1), 8-17. https://doi.org/10.31970/agrotech.v8i1.12

Pas, A. A., Sopandie, D., Trikoesoemaningtyas, & Santosa, D. A. (2015). Aplikasi Konsorsium Mikrob Filosfer dan Rizosfer Untuk Meningkatkan Pertumbuhan dan Hasil Tanaman Padi. https://doi.org/10.33964/jp.v24i1.39

Purkayastha, G. D., Mangar, P., Saha, A., & Saha, D. (2018). Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLoS ONE, 13(2), 1–27. https://doi.org/10.1371/journal.pone.0191761

Radhakrishnan, R., Hashem, A., & Abd Allah, E. F. (2017). Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology, 8, 1–14. https://doi.org/10.3389/fphys.2017.00667

Reisberg, E. E., Hildebrandt, U., Riederer, M., & Hentschel, U. (2013). Distinct phyllosphere bacterial communities on Arabidopsis wax mutant leaves. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0078613

Rodríguez, J., Lobato, C., Vázquez, L., Mayo, B., & Flórez, A. B. (2023). Prodigiosin-Producing Serratia marcescens as the Causal Agent of a Red Colour Defect in a Blue Cheese. Foods, 12(12), 2388. https://doi.org/10.3390/foods12122388

Roslan, M. A. M., Zulkifli, N. N., Sobri, Z. M., Zuan, A. T. K., Cheak, S. C., & Rahman, N. A. A. (2020). Seed biopriming with P- A nd K-solubilizing Enterobacter hormaechei sp. Improves the early vegetative growth and the P and K uptake of okra (Abelmoschus esculentus) seedling. PLoS ONE, 15, 1–21. https://doi.org/10.1371/journal.pone.0232860

Sachman-Ruíz B, Wong-Villarreal A, Aguilar-Marcelino L, Lozano-Aguirre LF, Espinosa-Zaragoza S, Reyes-Reyes AL, Sanzón-Gómez D, Mireles-Arriaga AI, Romero-Tirado R, Rocha-Martínez MK, et al (2022). Nematicidal, Acaricidal and Plant Growth-Promoting Activity of Enterobacter Endophytic Strains and Identification of Genes Associated with These Biological Activities in the Genomes. Plants, 11(22), 3136. https://doi.org/10.3390/plants11223136

Saleh, A. R., Gusli, S., Ala, A., Neswati, R., & Sudewi, S. (2022). Tree density impact on growth, roots length density, and yield in agroforestry based cocoa. Biodiversitas Journal of Biological Diversity, 23(1). https://doi.org/10.13057/biodiv/d230153

Santos, B. D. M. S. Dos, Silva, M. S. D. R. D. A., Chávez, D. W. H., & Rigobelo, E. C. (2021). Bacillus subtilis - capacity for enzymatic degradation, resistance to trace elements, antagonisms and siderophore production. Australian Journal of Crop Science, 15(5), 787–795. https://doi.org/10.21475/ajcs.21.15.05.p3206

Santoyo, G., Guzmán-Guzmán, P., Parra-Cota, F. I., de los Santos-Villalobos, S., Orozco-Mosqueda, M. D. C., & Glick, B. R. (2021). Plant growth stimulation by microbial consortia. Agronomy, 11(2). https://doi.org/10.3390/agronomy11020219

Setiawati, T. C., Erwin, D., Mandala, M., & Hidayatulah, A. (2022). Use of Bacillus as a Plant Growth-Promoting Rhizobacteria to Improve Phosphate and Potassium Availability in Acidic and Saline Soils. KnE Life Sciences, 2022, 541–558. https://doi.org/10.18502/kls.v7i3.11160

Sikuku, P., Kimani, J., Kamau, J., & Njinju, S. (2016). Influence of Nitrogen Supply on Photosynthesis, Chlorophyll Content and Yield of Improved Rice Varieties under Upland Conditions in Western Kenya. American Journal of Experimental Agriculture, 13(2), 1–14. https://doi.org/10.9734/ajea/2016/13859

Singh, S., Mitra, N. G., Sahu, R. K., Yaduwanshi, B., Singh, S., & Soni, K. (2021). Effect of Microbial Consortia on Available Nutrients and Microbial Population in Soil of Soybean in Vertisol. Biological Forum-An International Journal, 13(3a), 451–458. https://doi.org/10.5958/0974-0228.2021.00029.3

Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2022). Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. Plants, 11(22), 3065. https://doi.org/10.3390/plants11223065

Tomas, T. Y., Yusran, Wulandari, R., & Wahyuni, D. (2021). Pertumbuhan Semai Cempaka (Elmerrillia ovalis (Miq). Dandy) pada Media Tumbuh yang Ditambahkan Berbagai Jenis Seresah. Jurnal Warta Rimba, 9(2), 72–77. Retrieved from https://ejournal.unsrat.ac.id/v3/index.php/cocos/article/view/3592

Traoré, L., Babana, H., Antoun, H., Lahbib, M., Sacko, O., Nakatsu, C., & Stott, D. (2016). Isolation of Six Phosphate Dissolving Rhizosphere Bacteria (Bacillus subtilis) and Their Effects on the Growth, Phosphorus Nutrition and Yield of Maize (Zea mays L.) in Mali. Journal of Agricultural Science and Technology B, 6(2). . https://doi.org/10.17265/2161-6264/2016.02.005

Virgianti, D. P. (2021). Short Communication: Serratia rubidaea as contaminant in laboratory environment. Nusantara Bioscience, 13(1), 47–51. https://doi.org/10.13057/nusbiosci/n130107

Wijayanto, T., Boer, D., Aco, A., Mu’Min, N., Khaeruni, A., Asniah, Rahni, N. M., Hisein, W. S. A., Arsyad, M. A., Mudi, L., Satrah, V. N., & Karimuna, L. (2022). Application of local microbes increases growth and yield of several local upland rice cultivars of Southeast Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science, 951(1). https://doi.org/10.1088/1755-1315/951/1/012011

Woźniak, M., & Gałązka, A. (2019). The Rhizosphere Microbiome and Its Beneficial Effects on Plants – Current Knowledge And Perspectives. Postępy Mikrobiologii - Advancements of Microbiology, 58(1), 59–69. https://doi.org/10.21307/pm-2019.58.1.059

Wu, C., Kong, X., He, X., Song, F., Lin, Y., Jia, Y., Kurakov, A. V., & He, Z. (2022). The Biotic and Abiotic Factors of Regulation of Arbuscular Mycorrhizal Fungi Activity in Litter Decomposition: Review. Eurasian Soil Science, 55(10), 1446–1459. https://doi.org/10.1134/S1064229322100155

Zhang, J., Ahmed, W., Dai, Z., Zhou, X., He, Z., Wei, L., & Ji, G. (2022). Microbial Consortia: An Engineering Tool to Suppress Clubroot of Chinese Cabbage by Changing the Rhizosphere Bacterial Community Composition. Biology, 11(6). https://doi.org/10.3390/biology11060918

Zhang, M., Peng, C., Sun, W., Dong, R., & Hao, J. (2022). Effects of Variety, Plant Location, and Season on the Phyllosphere Bacterial Community Structure of Alfalfa (Medicago sativa L.). Microorganisms, 10(10). https://doi.org/10.3390/microorganisms10102023

Zhang, X., Tong, J., Dong, M., Akhtar, K., & He, B. (2022). Isolation, identification and characterization of nitrogen fixing endophytic bacteria and their effects on cassava production. PeerJ, 10, 1–21. https://doi.org/10.7717/peerj.12677

Author Biographies

Aris Aksarah, Alkhairaat University

Arfan, Alkhairaat University

Lisa Indriani Bangkele, Alkhairaat University

Zainal, Alkhairaat University

Fahri, Tadulako University

Mukhlis, Politeknik Pertanian Negeri Payakumbuh

License

Copyright (c) 2024 Aris Aksarah, Arfan, Lisa Indriani Bangkele, Zainal, Fahri, Mukhlis

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).