Comparison of Land Surface and GGMPlus Satellite Gravity Data Results (Case Study: The Kalibening Basin)

Authors

I Putu Arix Putra Wiguna , Mohammad Syamsu Rosid , Frilla Renty Tama Saputra

DOI:

10.29303/jppipa.v10i8.7318

Published:

2024-08-25

Issue:

Vol. 10 No. 8 (2024): August: In Press

Keywords:

GGMPlus, Gravity, Kalibening, Land surface

Research Articles

Downloads

How to Cite

Wiguna, I. P. A. P., Rosid, M. S., & Saputra, F. R. T. (2024). Comparison of Land Surface and GGMPlus Satellite Gravity Data Results (Case Study: The Kalibening Basin). Jurnal Penelitian Pendidikan IPA, 10(8), 4579–4588. https://doi.org/10.29303/jppipa.v10i8.7318

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

As technology develops, many satellite gravity data with world coverage and high resolution have become available, one of which is GGMPlus. However, the quality of the resulting satellite gravity data is still doubtful, because the GGMPlus satellite data is the result of calculations. This research will compare satellite data with land surface data in the Kalibening Basin area to see the precision and correlation of satellite data with land surface data. Land surface data was obtained from field measurements using Scintrex CG-5 with a grid between stations of 500-1000m and GGMPlus satellite gravity data with a distance between points of 600m. The results obtained show that the residual anomaly maps have many similarities, while the regional anomalies provide quite significant differences between the two data. The slicing results show a density contrast that is similar to the two data and matches the geological boundaries of the Kalibening Basin. Based on the results obtained, GGMPlus data can be an alternative to fill the gaps in field data or as supporting data in disaster mitigation and exploration in general. The correlation between land surface data and GGMPlus is quite rational with a value of R2 = 0.95 and RMSE = 6.89mGal.

References

Abdallah, M., Abd El Ghany, R., Rabah, M., & Zaki, A. (2022). Comparison of recently released satellite altimetric gravity models with shipborne gravity over the Red Sea. The Egyptian Journal of Remote Sensing and Space Science, 25(2), 579–592. https://doi.org/10.1016/j.ejrs.2022.03.016

Al-Zoubi, A., Eppelbaum, L., Abueladas, A., Ezersky, M., & Akkawi, E. (2013). Removing Regional Trends in Microgravity in Complex Environments: Testing on 3D Model and Field Investigations in the Eastern Dead Sea Coast (Jordan). International Journal of Geophysics, 2013, 1–13. https://doi.org/10.1155/2013/341797

Atmaja, T. H. S. (2020). Validasi Gravity Satelit Dengan Gravity Darat Daerah Prospek Geotermal “X” Untuk Analisis Struktur Bawah Permukaan. Universitas Indonesia.

Balkan, E., & Tün, M. (2023). Use of Land Gravity Data in Small Areas to Support Structural Geology, a Case Study in Eskişehir Basin, Turkey. Applied Sciences, 13(4), 2286. https://doi.org/10.3390/app13042286

Blakely, R. J. (1995). Potential Theory Ingravity and Magneticapplications. Cambridge University Press.

Casallas-Moreno, K. L., González-Escobar, M., Gómez-Arias, E., Mastache-Román, E. A., Gallegos-Castillo, C. A., & González-Fernández, A. (2021). Analysis of subsurface structures based on seismic and gravimetric exploration methods in the Las Tres Vírgenes volcanic complex and geothermal field, Baja California Sur, Mexico. Geothermics, 92, 102026. https://doi.org/10.1016/j.geothermics.2020.102026

Condon, W. H., Pardyanto, L., Ketner, K. B., Amin, T. C., Gafoer, S., & Samodra, H. (1996). Geological Map of The Banjanegara and Pekalongan Sheet, Java. Systematic Geological Map of Java.

Gunter, B., Ries, J., Bettadpur, S., & Tapley, B. (2006). A simulation study of the errors of omission and commission for GRACE RL01 gravity fields. Journal of Geodesy, 80(7), 341–351. https://doi.org/10.1007/s00190-006-0083-3

Haribowo, R., Judiarni, J. A., & Heksarini, A. (2021). Integration of Center of Gravity for Natural Disaster Mitigation in Indonesia. Hong Kong Journal of Social Sciences, 58, 18–26. Retrieved from http://www.hkjoss.com/index.php/journal/article/view/452%0Ahttp://www.hkjoss.com/index.php/journal/article/viewFile/452/448

Hasanah, L., Aminudin, A., Ardi, N. D., Utomo, A. S., Yuwono, H., Wardhana, D. D., Gaol, K. L., & Iryanti, M. (2016). Graben Structure Identification Using Gravity Method. IOP Conference Series: Earth and Environmental Science, 29, 012013. https://doi.org/10.1088/1755-1315/29/1/012013

Helaly, A. S. (2019). Shaping Buried Bedrock Topography Using Resistivity And Gravity Data In Wadi Allaqi, Eastern Desert, Egypt. Egyptian Journal of Geology, 63(1), 21–37. https://doi.org/10.21608/egjg.2019.216328

Indrawati, L. D. I., Indriana, R. D., & Nurwidyanto, I. (2020). Comparative Results of Regional and Residual Anomalies with the Upward Continuation, Moving Average, and Polynomial Methods for Magnetic Data. Journal of Physics and Its Applications, 2(2), 90–93. https://doi.org/10.14710/jpa.v2i2.7673

Irwandi, I., Darisma, D., Simanjuntak, A. V. H., Sofyan, H., & Asrillah. (2021). Establishing a new gravity reference station for geophysical investigation and educational purposes: comparison with satellite gravity data in Banda Aceh city, Indonesia. Journal of Physics: Conference Series, 1882(1), 012137. https://doi.org/10.1088/1742-6596/1882/1/012137

Kebede, H., Alemu, A., & Fisseha, S. (2020). Upward continuation and polynomial trend analysis as a gravity data decomposition, case study at Ziway-Shala basin, central Main Ethiopian rift. Heliyon, 6(1), e03292. https://doi.org/10.1016/j.heliyon.2020.e03292

Kern, M., Schwarz, K. K. P. P., & Sneeuw, N. (2003). A study on the combination of satellite, airborne, and terrestrial gravity data. Journal of Geodesy, 77(3–4), 217–225. https://doi.org/10.1007/s00190-003-0313-x

Latifah, I. (2010). Penentuan Anomali Bouguer dan Densitas Rata-rata Batuan Berdasarkan Data Gravitasi di Daerah Semarang. Universitas Islam Negeri Syarif Hidayatullah.

Martínez-Moreno, F. J., Galindo-Zaldívar, J., Pedrera, A., Teixidó, T., Peña, J. A., & González-Castillo, L. (2015). Regional and residual anomaly separation in microgravity maps for cave detection: The case study of Gruta de las Maravillas (SW Spain). Journal of Applied Geophysics, 114, 1–11. https://doi.org/10.1016/j.jappgeo.2015.01.001

Menke, W. (2018). Geophysical Data Analysis: Discrete Inverse Theory. Amsterdam: Elsevier.

Minarto, E., & Azhari, N. Y. (2021). Application of Moving Average (MA) and Upward Continuation Methods to Bouguer Gravity Anomaly Data for Fault Analysis of the Earthquake Risk Area of Timor and Flores Islands. Journal of Physics: Conference Series, 1951(1), 012051. https://doi.org/10.1088/1742-6596/1951/1/012051

Moeck, I. S. (2014). Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews, 37, 867–882. https://doi.org/10.1016/j.rser.2014.05.032

Nguimbous-Kouoh, J. J., III, S. N., Mbarga, T. N., & Manguelle-Dicoum, E. (2017). Use of the Polynomial Separation and the Gravity Spectral Analysis to Estimate the Depth of the Northern Logone Birni Sedimentary Basin (CAMEROON). International Journal of Geosciences, 08(12), 1442–1456. https://doi.org/10.4236/ijg.2017.812085

Novák, P., Kern, M., Schwarz, K.-P., Sideris, M. G., Heck, B., Ferguson, S., Hammada, Y., & Wei, M. (2003). On geoid determination from airborne gravity. Journal of Geodesy, 76(9–10), 510–522. https://doi.org/10.1007/s00190-002-0284-3

Purnomo, J., Koesuma, S., & Yunianto, M. (2016). Pemisahan Anomali Regional-Residual pada Metode Gravitasi Menggunakan Metode Moving Average, Polynomial dan Inversion. Indonesian Journal Of Applied Physics, 3(01), 10. https://doi.org/10.13057/ijap.v3i01.1208

Putra, D. P. N., Fajar, M. H. M., Warnana, D. D., Widodo, A., Ulumuddin, F., & Zukhrufah, S. Z. (2023). Subsurface Analysis on Ranu Grati Lineaments with Satellite Gravity Data. Jurnal Penelitian Pendidikan IPA, 9(10), 8462–8466. https://doi.org/10.29303/jppipa.v9i10.3400

Rafi, M. E. D., Fajar, M. H. M., Purwanto, M. S., Hilyah, A., Bahri, A. S., & Rahayu, H. K. (2023). Analysis of Formation Ronggojalu Spring and Probolinggo Active Fault Continuity with Satellite Data Gravity Method. Jurnal Penelitian Pendidikan IPA, 9(10), 8456–8461. https://doi.org/10.29303/jppipa.v9i10.3399

Rivas, J. (2009). Gravity and Magnetic Methods. A short course on Surface Exploration for Geothermal Recourses organized by UNU-GTP and LaGeo. Ahuachapan and Santa Tecla.

Rosid, M. S., Ali, Y. H., & Ramdhan, M. (2022). Characterization of the Mamasa Earthquake Source Based on Hypocenter Relocation and Gravity Derivative Data Analysis. International Journal of GEOMATE, 23(ue 97), 220–227. https://doi.org/10.21660/2022.97j2375

Rosid, M. S., Nursarifa, S., & Riyanto, A. (2023). Identification of Geological Structures in Sigi Regency, Central Sulawesi Based on Derivative Analysis of Gravity Data. International Journal of GEOMATE, 24(103), 26–33. https://doi.org/10.21660/2023.103.3426

Rosid, M. S., & Siregar, H. (2017). Determining fault structure using first horizontal derivative (FHD) and horizontal vertical diagonal maxima (HVDM) method: A comparative study. International Symposium on Current Progress in Mathematics and Sciences 2016 (ISCPMS 2016), 1862(1), 030171. https://doi.org/10.1063/1.4991275

Sandwell, D., Garcia, E., Soofi, K., Wessel, P., Chandler, M., & Smith, W. H. F. (2013). Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. The Leading Edge, 32(8), 892–899. https://doi.org/10.1190/tle32080892.1

Sari, I. P., Rosid, S., & Widianto, E. (2012). A Comparison of Filtering Method for Regional and Residual Field Separation from Bouguer Anomaly. International Conference on Physics and Its Applications (ICOPIA), 241–250. Retrieved from https://lib.ui.ac.id/detail?id=20312205

Sehah, Prabowo, U. N., Raharjo, S. A., & Ariska, L. (2022). Power Spectrum Analysis of the Satellite Gravity Anomalies Data to Estimate the Thickness of Sediment Deposits in the Purwokerto-Purbalingga Groundwater Basin. Soedirman International Conference on Mathematics and Applied Sciences (SICOMAS 2021), 5. https://doi.org/10.2991/apr.k.220503.022

Setiadi, I., & Pratama, A. C. (2018). Pola Struktur dan Konfigurasi Geologi Bawah Permukaan Cekungan Jawa Barat Utara Berdasarkan Analisis Gayaberat. Jurnal Geologi Dan Sumberdaya Mineral, 19(2), 59–72. https://doi.org/10.33332/jgsm.geologi.19.2.59-72

Shih, H.-C., Hwang, C., Barriot, J.-P., Mouyen, M., Corréia, P., Lequeux, D., & Sichoix, L. (2015). High-resolution gravity and geoid models in Tahiti obtained from new airborne and land gravity observations: data fusion by spectral combination. Earth, Planets and Space, 67(1), 124. https://doi.org/10.1186/s40623-015-0297-9

Thurston, J. B., & Brown, R. J. (1992). the Filtering Characteristics of Least-Squares Polynomial Approximation for Regional/Residual Separation. Canadian Journal of Exploration Geophysics, 28(2), 71–80. Retrieved from https://csegjournal.com/assets/pdfs/archives/1992_12/1992_12_least_sqrs_poly.pdf

Yanis, M., & Marwan. (2019). The potential use of satellite gravity data for oil prospecting in Tanimbar Basin, Eastern Indonesia. IOP Conference Series: Earth and Environmental Science, 364(1), 012032. https://doi.org/10.1088/1755-1315/364/1/012032

Yanis, M., Marwan, M., & Kamalia, N. (2020). Aplikasi Satellite GEOSAT dan ERS sebagai Metode Alternatif Pengukuran Gravity Ground pada Cekungan Hidrokarbon di Pulau Timur. Majalah Geografi Indonesia, 33(2). https://doi.org/10.22146/mgi.50782

Yusvinda, M. N., Puspitasari, S. W., Nadia, M. P. W., & Aziz, K. N. (2020). Structure Interpretation Using Gravity Spectral Analysis and Derivative Method in Grindulu Fault, Pacitan, East Java. Proceedings of the 7th International Conference on Research, Implementation, and Education of Mathematics and Sciences (ICRIEMS 2020). https://doi.org/10.2991/assehr.k.210305.060

Zhang, M., Qiao, J., Zhao, G., & Lan, X. (2019). Regional gravity survey and application in oil and gas exploration in China. China Geology, 2(3), 380–388. https://doi.org/10.31035/cg2018108

Author Biographies

I Putu Arix Putra Wiguna, Universitas Indonesia

Mohammad Syamsu Rosid, Universitas Indonesia

Frilla Renty Tama Saputra, Universitas Indonesia

License

Copyright (c) 2024 I Putu Arix Putra Wiguna, Mohammad Syamsu Rosid, Frilla Renty Tama Saputra

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).