Identification and Molecular Analysis of Hemocyanin as a Body Resistance Gene in Litopenaeus vannamei

Authors

DOI:

10.29303/jppipa.v10i6.7331

Published:

2024-06-20

Issue:

Vol. 10 No. 6 (2024): June

Keywords:

Body resistance, Gene, Hemocyanin, Litopenaeus vannamei, White feces disease

Research Articles

Downloads

How to Cite

Amanda, T., Kilawati, Y., & Maftuch. (2024). Identification and Molecular Analysis of Hemocyanin as a Body Resistance Gene in Litopenaeus vannamei. Jurnal Penelitian Pendidikan IPA, 10(6), 3152–3160. https://doi.org/10.29303/jppipa.v10i6.7331

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Production of white shrimp (Litopenaeus vannamei) tends to decrease every year caused by diseases, one of which is White Feces Disease (WFD). Genetically, monitoring has been carried out on the parent characters of SPF (Specific Pathogen Free) shrimp imported from Hawaii and Florida with low genetic variation. If there is a threat such as disease caused by bacteria and the gene that codes for disease control or the body's resistance gene is missing, it allows the individual to become susceptible to disease. Gene that codes for body resistance in white shrimp is hemocyanin. Hemocyanin gene studies are needed as a first step in controlling disease in white shrimp. Method used is a descriptive method. Procedures carried out are sample collection, detection of WFD, molecular analysis of hemocyanin and data analysis. Results showed that healthy shrimp had hemocyanin while shrimp with WFD had very little or no amount of hemocyanin. Hemocyanin gene profile in healthy shrimp was also analyzed and there were 4 nucleotide change made changes to 4 amino acid. Changes in amino acids affect the stability of hemocyanin and cause polymorphism of hemocyanin. Phylogenetic analysis showed dendogram split into two clades between L. vannamei and P. monodon.

References

Alfiansah, Y. R., Peters, S., Harder, J., Hassenrück, C., & Gärdes, A. (2020). Structure and co-occurrence patterns of bacterial communities associated with white faeces disease outbreaks in Pacific white-leg shrimp Penaeus vannamei aquaculture. Scientific Reports, 10(1), 11980. https://doi.org/10.1038/s41598-020-68891-6

Anissa, R. K., Lisdiana, L., & Widyayanti, A. T. (2024). Optimasi metode Nested PCR untuk deteksi Vibrio parahaemolyticus AHPND pada udang vaname (Litopenaeus vannamei). LenteraBio: Berkala Ilmiah Biologi, 13(1), 1–13. https://doi.org/10.26740/lenterabio.v13n1.p1-13

Aramburu, O., Ceballos, F., Casanova, A., Le Moan, A., Hemmer-Hansen, J., Bekkevold, D., Bouza, C., & Martínez, P. (2020). Genomic signatures after five generations of intensive selective breeding: Runs of homozygosity and genetic diversity in representative domestic and wild populations of turbot (Scophthalmus maximus). Frontiers in Genetics, 11, 296. https://doi.org/10.3389/fgene.2020.00296

Aweya, J. J., Zheng, Z., Zheng, X., Yao, D., & Zhang, Y. (2021). The expanding repertoire of immune-related molecules with antimicrobial activity in penaeid shrimps: a review. Reviews in Aquaculture, 13(4), 1907–1937. https://doi.org/10.1111/raq.12551

Badua, C. L. D. C., Baldo, K. A. T., & Medina, P. M. B. (2021). Genomic and proteomic mutation landscapes of SARS‐CoV‐2. Journal of Medical Virology, 93(3), 1702–1721. https://doi.org/10.1002/jmv.26548

Dewanata, P. A., & Mushlih, M. (2021). Differences in DNA purity test using UV-Vis Spectrophotometer and Nanodrop Spectrophotometer in type 2 diabetes mellitus patients. Indonesian Journal of Innovation Studies, 15. https://doi.org/10.21070/ijins.v15i.553

Dharyamanti, I. (2021). Filogenetika molekuler: metode taksonomi organisme berdasarkan sejarah evolusi. Retrieved from https://www.scirp.org/reference/referencespapers?referenceid=755496

Fan, J., Li, X., Lu, H., Lin, R., Aweya, J. J., & Zhang, Y. (2019). N-terminal diversity of Litopenaeus vannamei hemocyanin and immunity. Molecular Immunology, 112, 360–368. https://doi.org/10.1016/j.molimm.2019.06.019

Hassan, S. A. H., Sharawy, Z. Z., El Nahas, A. F., Hemeda, S. A., El-Haroun, E., & Abbas, E. M. (2022). Modulatory effects of various carbon sources on growth indices, digestive enzymes activity and expression of growth-related genes in whiteleg shrimp, Litopenaeus vannamei reared under an outdoor zero-exchange system. Aquaculture Research, 53(16), 5594–5605. https://doi.org/10.1111/are.16041

Inayah, Z. N., Musa, M., & Arfiati, D. (2023). Growth of vannamei Shrimp (Litopenaeus vannamei) in Intensive Cultivation Systems. Jurnal Penelitian Pendidikan IPA, 9(10), 8821–8829. https://doi.org/10.29303/jppipa.v9i10.4278

Kang, Z., Kong, J., Sui, J., Dai, P., Luo, K., Meng, X., Liu, J., Chen, B., Cao, J., & Tan, J. (2024). Optimal open nucleus breeding system for long-term genetic gain in the Pacific white shrimp using genomic selection. Aquaculture. https://doi.org/10.1016/j.aquaculture.2024.740760

Kim, H.-J., Shyam, K. U., Oh, M.-J., Lee, J., Rajendran, K. V, Kim, D.-H., Kim, H. J., & Kim, W.-S. (2023). A multiplex real-time polymerase chain reaction (qPCR) kit targeting VP664 and VP28 genes of white spot syndrome virus (WSSV). Aquaculture, 577, 739968. https://doi.org/10.1016/j.aquaculture.2023.739968

Kumar, R., Huang, J. Y., Ng, Y. S., Chen, C. Y., & Wang, H. C. (2022). The regulation of shrimp metabolism by the white spot syndrome virus (WSSV). Reviews in Aquaculture, 14(ue 3), 1150–1169. https://doi.org/10.1111/raq.12643

Kumar, V., Roy, S., Behera, B. K., Bossier, P., & Das, B. K. (2021). Acute hepatopancreatic necrosis disease (AHPND): Virulence, pathogenesis and mitigation strategies in Shrimp aquaculture. Toxins, 13(8). https://doi.org/10.3390/toxins13080524

Kusumaningrum, H. P., Budi, W. S., Azam, M., & Bawono, A. (2014). Design of electrophoresis device for Optimation of DNA visualization and DNA concentration using software. Jurnal Pendidikan Fisika Indonesia, 10(2), 194–202. https://doi.org/10.15294/jpfi.v10i2.3456

Lederer, T., Hipler, N. M., Thon, C., Kupcinskas, J., & Link, A. (2024). Comparison of fecal MicroRNA isolation using various total RNA isolation kits. Genes, 15(4), 498. https://doi.org/10.3390/genes15040498

Liu, Y., Bhagwate, A., Winham, S. J., Stephens, M. T., Harker, B. W., McDonough, S. J., Stallings-Mann, M. L., Heinzen, E. P., Vierkant, R. A., Hoskin, T. L., Frost, M. H., Carter, J. M., Pfrender, M. E., Littlepage, L., Radisky, D. C., Cunningham, J. M., Degnim, A. C., & Wang, C. (2022). Quality control recommendations for RNASeq using FFPE samples based on pre-sequencing lab metrics and post-sequencing bioinformatics metrics. BMC Medical Genomics, 15(1). https://doi.org/10.1186/s12920-022-01355-0

Lokapirnasari, W., Sahidu, A., Nurhajati, T., Supranianondo, S., & Yulianto, A. (2017). Sekuensing 16S DNA bakteri selulolitik asal limbah cairan rumen sapi peranakan Ongole (Sequencing of 16s DNA of cellulolytic bacteria from bovine rumen fluid waste ongole crossbreed. Jurnal Veteriner, 18(1), 76–82. https://doi.org/10.19087/jveteriner.2017.18.1.76

Maharana, S., Wang, J., Papadopoulos, D. K., Richter, D., Pozniakovsky, A., Poser, I., Bickle, M., Rizk, S., Guillén-Boixet, J., & Franzmann, T. M. (2018). RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science, 360(6391), 918–921. https://doi.org/10.1126/science.aar7366

Mahmoodi, M., Afshari, K. P., Seyedabadi, H. R., & Aboozari, M. (2018). Sequence analysis of 12S rRNA and 16S rRNA mitochondrial genes in Iranian Afshari sheep. Banat’s Journal of Biotechnology, 9(18). https://doi.org/10.7904/2068-4738-IX(18)-5

Martoni, F. (2019). Meaning X in the amino acid sequence. Retrieved from https://www.researchgate.net/post/Meaning-X-in-the-amino-acid-sequence

Mo, Y., Wan, R., & Zhang, Q. (2012). Application of Reverse Transcription-PCR and Real-Time PCR in Nanotoxicity Research (pp. 99–112). https://doi.org/10.1007/978-1-62703-002-1_7

Morgil, H., Gercek, Y. C., & Tulum, I. (2020). Single nucleotide polymorphisms (SNPs) in plant genetics and breeding. In The Recent Topics in Genetic Polymorphisms (pp. 400–825). https://doi.org/10.5772/intechopen.91886

Orfanoudaki, M., Hartmann, A., Karsten, U., & Ganzera, M. (2019). Chemical profiling of mycosporine‐like amino acids in twenty‐three red algal species. Journal of Phycology, 55(2), 393–403. https://doi.org/10.1111%2Fjpy.12827

Pratiwi, R. K., Mahmudi, M., Faqih, A. R., & Arfiati, D. (2023). Dynamics of water quality for vannamei shrimp cultivation in intensive ponds in coastal areas. Jurnal Penelitian Pendidikan IPA, 9(10), 8656–8664. https://doi.org/10.29303/jppipa.v9i10.4322

Rahmi, I., Arfiati, D., Musa, M., & Karimah, K. (2023). Dynamics of Physics and Chemistry of Vanamei Shrimp (Litopenaeus vannamei. https://doi.org/10.29303/jppipa.v9i1.2528

Rajalakshmi, S. (2017). Different types of PCR techniques and its applications. International Journal of Pharmaceutical, Chemical & Biological Sciences, 7(3). Retrieved from https://www.scirp.org/reference/referencespapers?referenceid=2818692

Robert, F., & Pelletier, J. (2018). Exploring the impact of single-nucleotide polymorphisms on translation. Frontiers in Genetics, 9, 507. https://doi.org/10.3389/fgene.2018.00507

Shahzadi, I., Mehmood, F., Ali, Z., Malik, M. S., Waseem, S., Mirza, B., Ahmed, I., & Waheed, M. T. (2019). Comparative analyses of chloroplast genomes among three Firmiana species: Identification of mutational hotspots and phylogenetic relationship with other species of Malvaceae. Plant Gene, 19, 100199. https://doi.org/10.1016/j.plgene.2019.100199

Sophian, A. (2021). DNA isolation of chicken feathers from the base of the young feathers, the base of the old feathers, and the tip of the feathers. Bioeduscience, 5(2), 104–108. https://doi.org/10.22236/j.bes/526211

Sugiharta, A., Fadjar, M., & Hardoko, H. (2023). The use of purik leaf extract (Mitragyna speciosa) on hematological and histopathological profile of vannamei shrimp (Litopenaeus vannamei) on Vibrio parahaemolyticus infection. Jurnal Penelitian Pendidikan IPA, 9(SpecialIssue), 1262–1270. https://doi.org/10.29303/jppipa.v9ispecialissue.4216

Suryani, C., Prasetya, E., Harsono, T., Amalia, L., Muammar, M., Musdary, F., Aulia, R. N., & Husna, A. (2022). Genetic and kinship analysis of Kenanga (Cananga odorata) from North Sumatra. AIP Conference Proceedings, 2659(1). https://doi.org/10.1063/5.0116463

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120

Utaminingsih, S., & Sophian, A. (2022). Analysis of purity and concentration of DNA isolation results on chondroitin samples. BiosciED: Journal of Biological Science and Education, 3(2), 56–61. Retrieved from https://e-journal.upr.ac.id/index.php/bed

Wang, Z., Zhou, J., Li, J., Zou, J., & Fan, L. (2020). The immune defense response of Pacific white shrimp (Litopenaeus vannamei) to temperature fluctuation. Fish & Shellfish Immunology, 103, 103–110. https://doi.org/10.1016/j.fsi.2020.04.053

Wei, J., Zhang, X., Yu, Y., Huang, H., Li, F., & Xiang, J. (2014). Comparative transcriptomic characterization of the early development in Pacific white shrimp Litopenaeus vannamei. PLoS ONE, 9(9). https://doi.org/10.1371/journal.pone.0106201

Wyban, J. (2019). Selective breeding of Penaeus vannamei: impact on world aquaculture and lessons for future. Journal of Coastal Research, 86(SI), 1–5. https://doi.org/10.2112/SI86-001.1

Yamin, M., Khairuddin, K., & Padusung, P. (2022). Breeding of Philemon buceroides by Synchronization of Pregnant Mare Serum Gonadotropine (PMSG) Reproductive Hormone and Estrogen as Conservation for Preventing Its Extinction. Jurnal Penelitian Pendidikan IPA, 8(2), 957–962. https://doi.org/10.29303/jppipa.v8i2.1482

Yudiati, E., Azhar, N., Ambariyanto, A., Alghazeer, R., & Trianto, A. (2024). Immunostimulatory effects of ulvan on trypsin-mediated protein digestion in the gut of pacific whiteleg shrimp (Litopenaeus vannamei. Jurnal Riset Akuakultur, 19(1), 45–56. https://doi.org/10.15578/jra.19.1.2024.45-56

Zhao, S., Lu, X., Zhang, Y., Zhao, X., Zhong, M., Li, S., Guo, E., & Lun, J. (2013). Identification of a novel alternative splicing variant of hemocyanin from shrimp Litopenaeus vannamei. Immunology Letters, 154(1–2), 1–6. https://doi.org/10.1016/j.imlet.2013.08.003

Author Biographies

Talitha Amanda, University of Brawijaya

Yuni Kilawati, University of Brawijaya

Maftuch, University of Brawijaya

License

Copyright (c) 2024 Talitha Amanda, Yuni Kilawati, Maftuch

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).