Fishmeal-Based Media Supports Growth and Endospore Production of Locally-Isolated Lysinnibacillus sphaericus and Induces its Toxicity to 3rd Instar Aedes aegypti Larvae in Laboratory Conditions

Authors

Bambang Fajar Suryadi , Ika Mustikasari , Zuriatun Annisa , Sarkono , Galuh Tresnani

DOI:

10.29303/jppipa.v10i7.7361

Published:

2024-07-25

Issue:

Vol. 10 No. 7 (2024): July: In Press

Keywords:

Fishmeal-based media, Lysinibacillus sphaericus, 3rd-instar Aedes aegypti larvae

Research Articles

Downloads

How to Cite

Suryadi, B. F., Mustikasari, I., Annisa, Z., Sarkono, & Tresnani, G. (2024). Fishmeal-Based Media Supports Growth and Endospore Production of Locally-Isolated Lysinnibacillus sphaericus and Induces its Toxicity to 3rd Instar Aedes aegypti Larvae in Laboratory Conditions. Jurnal Penelitian Pendidikan IPA, 10(7), 3613–3621. https://doi.org/10.29303/jppipa.v10i7.7361

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The aim of this study was to determine whether fishmeal-based media could be used to grow L. sphaericus and induce its toxicity against Aedes aegypti larvae. Three concentrations (10, 20 and 30%) of fishmeal-based media were used to grow L. sphaericus isolate Bs2-1-2. Cell growth and endospore production were observed every 12 hours for 72 hours. The lethal concentration was measured every 24 hours for 72 hours of fermentation. The highest cell concentration was found in L. sphaericus grown on the media with 30% fishmeal concentration (3.03x1008 cells/mL), followed by 20% concentration (2.43x1008 cells/mL) and the lowest at 10% concentration (2.20x1008 cells/mL). At the end of fermentation, the highest concentration was found in L. sphaericus grown on 30% fishmeal-based media (1.51x1008 cells/mL), followed by 20% media (6.95x1007 cells/mL) and 10% media (3.21x1007 cells/mL). After 72-hour incubation, the highest endospore concentration was achieved by L. sphaericus grown on 20% (2.51x1008 cells/mL) and 10% (2.19x1008 cells/mL) fishmeal-based media. Initial larval toxicity of L. sphaericus showed the highest mortality on 20 and 30% fishmeal-based media (both reaching 53.33%), while 10% fishmeal-based media gave only 26.67% larval mortality. The LC50 value at 72 hours was achieved by L. sphaericus cultured on 30% fishmeal-based media (2.47 x 1008 cells/mL), followed by 20% concentration (4.82 x 1008 cells/mL) and 10% concentration (9.01 x 1009 cells/mL). The conclusion of this study was all concentrations of fishmeal-based media could support cell growth, endospore production and larval toxicity induction of L. sphaericus.

References

Abbot, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267. https://doi.org./10.1093/jee/18.2.265a

Agustina, E. (2018). Fauna Nyamuk Vektor Tular Penyakit dan Tempat Perindukannya di Kawasan Kampus UIN Ar-Raniry. In Prosiding Seminar Nasional Biologi, Teknologi dan Kependidikan (Vol. 3, No. 1). http://dx.doi.org/10.22373/pbio.v3i1.2631

Ahmed, H. K. (1990). Physiology and toxin gene expression of Bacillus sphaericus: A mosquito pathogen for biocontrol. Heriot Watt, UK.

Ahmed, I., Yokota, A., Yamazoe, A., & Fujiwara, T. (2007). Proposal of Lysinibacillus boronitolerans gen. Nov. Sp. Nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. Nov. And Bacillus sphaericus to Lysinibacillus sphaericus comb. Nov. International Journal of Systematic and Evolutionary Microbiology, 57(5), 1117–1125. https://doi.org/10.1099/ijs.0.63867-0

Astuti, R. R. U. N., Illahi, A. N., Umri, W. N. S., & Falah, A. A. (2023). Potency of Secondary Metabolites from Salacca zalacca, Sonchus arvensis, and Carica papaya against Aedes aegypti L. Jurnal Penelitian Pendidikan IPA, 9(7), 4931–4937. https://doi.org/10.29303/ jppipa.v9i7.4129

Baumann, P. A. U. L., Clark, M. A., Baumann, L. I. N. D. A., & Broadwell, A. H. (1991). Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins. Microbiological reviews, 55(3), 425-436. https://doi.org/10.1128/mr.55.3.425-436.1991

Benelli, G., Jeffries, C., & Walker, T. (2016). Biological Control of Mosquito Vectors: Past, Present, and Future. Insects, 7(4), 52. https://doi.org/10.3390/insects7040052

Berry, C. (2012). The bacterium, Lysinibacillus sphaericus, as an insect pathogen. Journal of Invertebrate Pathology, 109(1), 1–10. https://doi.org/10.1016/j.jip.2011.11.008

Cho, J. H., & Kim, I. H. (2011). Fish meal – nutritive value. Journal of Animal Physiology and Animal Nutrition, 95, 685–692. https://doi.org/10.1111/j.1439-0396.2010.01109.x

Couret, J., Notarangelo, M., Veera, S., LeClaire-Conway, N., Ginsberg, H. S., & LeBrun, R. L. (2020). Biological control of Aedes mosquito larvae with carnivorous aquatic plant, Utricularia macrorhiza. Parasites & Vectors, 13(1). https://doi.org/10.1186/s13071-020-04084-4

Dalilah, D., Dalilah, F. A., Prasasty, G. D., Handayani, D., Susilawati, S., & Pahlepi, R. I. (2022). Keragaman Spesies Nyamuk di Dusun Sukoharjo, Desa Bayung Lencir, Kabupaten Musi Banyuasin. Jurnal Kedokteran dan Kesehatan : Publikasi Ilmiah Fakultas Kedokteran Universitas Sriwijaya, 9(1), 109–116. ttps://doi.org/10.32539/JKK.V9I1.16539

Da Silva, W. J., Pilz-Júnior, H. L., Heermann, R., & Da Silva, O. S. (2020). The great potential of entomopathogenic bacteria Xenorhabdus and Photorhabdus for mosquito control: A review. Parasites & Vectors, 13(1), 376. https://doi.org/10.1186/s13071-020-04236-6

Delécluse, A., Juarez-Perez, V., & Berry, C. (2000). Vector-active toxins: Structure and diversity. In Entomopathogenic Bacteria: From Laboratory to Field Application. The Netherlands: Kluwer.

Dewi, N. D. K., Hidayati, E., Sarkono, S., Prasedya, E. S., & Suryadi, B. F. (2022). Isolation of Entomopathogenic Lysinibacillus sphaericus from Sewage at Some Housing Complex in Mataram City and Evaluation of Its Toxicity Against Aedes aegypti Larvae in Laboratory. Biotropika: Journal of Tropical Biology, 10(1), Article 1. https://doi.org/10.21776/ub.biotropika.2022.010.01.07

Doğan, A. U., Çakar, F., Şahin, F., & Çağal, M. M. (2020). Isolation, identification and characterization of three new strains of Bacillus sphaericus as mosquito pathogen. Tarla Bitkileri Merkez Arastirma Enstitusu, 29(2), 55–61. https://doi.org/10.38042/biost.2020.29.02.01

Dulmage, T., Yousten, A. A., Singer, S., & Lacey, L. A. (1990). Guidlines of Production Bacillus thringiensis H-15 and Bacillus sphaericus. Vienna: UNDP/WHO TDR.

EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). (2014). Guidance on the assessment of the toxigenic potential of Bacillus species used in animal nutrition. EFSA Journal, 12(5). http://dx.doi.org/10.2903/j.efsa.2014.3665

El-Bendary, M A. (1999). Growth physiology and production of mosquitocidal toxins from Bacillus sphaericus. Faculty of Science, Ain-Shams University, Egypt.

El-Bendary, M. A. (2010). Production of mosquitocidal Bacillus sphaericus by solid state fermentation using agricultural wastes. World Journal of Microbiology and Biotechnology, 26(1), 153–159. https://doi.org/10.1007/ s11274-009-0154-8

Finney, D. J. (1971). Probit Analysis (3rd ed.). London: Cambridge University Press.

Gamit, T., Hajoori, M., & Maisuria, N. (2023). A Review: Formulation of Alternative Culture Media. International Journal of Life Science and Agriculture Research, 02(08). http://dx.doi.org/10.55677/ijlsar/V02I08Y2023-01

Imam, H., Sofi, G., & Seikh, A. (2014). The basic rules and methods of mosquito rearing (Aedes aegypti). Trop. Parasitol., 4(1), 53–55. https://doi.org/10.4103/2229-5070.129167

Judijanti, L., Ahmad, H., Inayah, I., Sahani, W., & Angkejaya, O. W. (2024). Role of Family and Community Health Center Employees in Controlling Dengue Fever in Puskesmas Antang Makassar. Jurnal Penelitian Pendidikan IPA, 10(5), 2838–2845. https://doi.org/10.29303/jppipa.v10i5.6204

Kellen, W. R., Clark, T. B., Lindegren, J. E., Ho, B. C., Rogoff, M. H., & Singer, S. (1965). Bacillus sphaericus Neide as a pathogen of mosquitoes. Journal of Invertebrate Pathology, 7(4), 442–448. https://doi.org/10.1016/0022-2011(65)90120-5

Khachatourians, G. G. (2019). Insecticides, Microbial. In Reference Module in Life Sciences (pp. 95–109). Amsterdam, the Netherland: Elsevier Ltd.

Klein, D., Yanai, P., Hofstein, R., Fridlender, B., & Braun, S. (1989). Production of Bacillus sphaericus larvicide on industrial peptones. Applied microbiology and biotechnology, 30, 580-584. https://doi.org/10.1007/BF00255363

Mathai, A., Subbannayya, K., & Shivananda, P. G. (1985). Fishmeal extract agar—A new bacteriological medium—Preliminary report. Indian J Pathol Microbiol, 28(4), 329–332. Retrieved from https://pesquisa.bvsalud.org/portal/resource/pt/sea-75230

Mohanty, B., Mahanty, A., Ganguly, S., Sankar, T. V., Chakraborty, K., Rangasamy, A., … Sharma, A. P. (2014). Amino Acid Compositions of 27 Food Fishes and Their Importance in Clinical Nutrition. Journal of Amino Acids, 1–7. http://dx.doi.org/ 10.1155/2014/269797

Obeta, J. A. N., & Okafor, N. (1983). Production of Bacillus sphaericus strain 1593 primary powder on media made from locally obtainable Nigerian agricultural products. Canadian Journal of Microbiology, 29(6), 704–709. https://doi.org/10.1139/m83-115

Opota, O., Gauthier, N. C., Doye, A., Berry, C., Gounon, P., Lemichez, E., & Pauron, D. (2011). Bacillus sphaericus Binary Toxin Elicits Host Cell Autophagy as a Response to Intoxication. PLoS ONE, 6(2), e14682. http://dx.doi.org/ 10.1371/journal.pone.0014682

Park, H., Bideshi, D. K., & Federici, B. A. (2010). Properties and applied use of the mosquitocidal bacterium, Bacillus sphaericus. Journal of Asia-Pacific Entomology, 13(3), 159–168. http://dx.doi.org/10.1016/j.aspen.2010. 03.002

Prabakaran, G., Balaraman, K., Hoti, S. L., & Manonmani, A. M. (2007). A cost-effective medium for the large-scale production of Bacillus sphaericus H5a5b (VCRC B42) for mosquito control. Biological Control, 41(3), 379–383. https://doi.org/10.1016/j.biocontrol. 2007.02.004

Prabakaran, G., & Hoti, L. (2008). Egg yolk enhances early sporulation and toxicity of Bacillus sphaericus H5a5b for small-scale production of a mosquito control agent. Acta Tropica, 108(1), 50–53. https://doi.org/ 10.1016/j.actatropica.2008.07.007

Poopathi, S., & Tyagi, B. K. (2004). Mosquitocidal toxins of spore forming bacteria: Recent advancement. Afr. J. Biotechnol., 3(12), 643–650. Retrieved from https://tspace.library.utoronto.ca/bitstream/1807/6568/1/jb04127.pdf

Rahardianingtyas, E., & Wianto, R. (2014). Isolasi Bacillus thuringiensis di Berbagai Habitat Di Kabupaten Dan Kota Magelang dan Patogenitas Terhadap Jentik Nyamuk Aedes Aegypti. Vektora, 6(1), 13–18. Retrieved from https://rb.gy/sluyhl

Rahman, M. A., Khan, S. A., Sultan, M. T., & Islam, M. R. (2012). Characterization of Bacillus spharicus binary proteins for biological control of Culex quinquefasciatus mosquitoes a review. Int J Biosci, 2, 1-13. Retrieved from https://rb.gy/ensxfw

Russell, B. L., Jelley, S. A., & Yousten, A. A. (1989). Carbohydrate metabolism in the mosquito pathogen Bacillus sphaericus 2362. Applied and Environmental Microbiology, 55(2), 294–297. https://doi.org/10.1128/aem.55.2.294-297. 1989

Santana-Martinez, J. C., Silva, J. J., & Dussan, J. (2019). Efficacy of Lysinibacillus sphaericus against mixed-cultures of field-collected and laboratory larvae of Aedes aegypti and Culex quinquefasciatus. Bulletin of Entomological Research, 109(1), 111–118. https://doi.org/10.1017/S0007485318000342

Shevtsov, S., Petrova, T. M., Khovrychev, M. P., Letunova, E. V., & Shevtsov, S. (1990). Growth and spore germination factors of various strains of Bacillus sphaericus. Mikrobiologiia, 59(3), 453–459. Retrieved from https://europepmc.org/article/med/2263222

Surya, W., Chooduang, S., Choong, Y. K., Torres, J., & Boonserm, P. (2016). Binary Toxin Subunits of Lysinibacillus sphaericus Are Monomeric and Form Heterodimers after In Vitro Activation. PloS One, 11(6), 1–14. http://dx.doi.org/10.1371/journal.pone.0158356

Thanabalu, T., Hindley, J., Jackson-Yap, J., & Berry, C. (1991). Cloning, sequencing, and expression of a gene encoding a 100-kilodalton mosquitocidal toxin from Bacillus sphaericus SSII-1. Journal of Bacteriology, 173(9), 2776–2785. https://doi.org/10.1128/jb.173.9.2776-2785. 1991

The US Environmental Protection Agency. (2023). Success in Mosquito Control_An Integrated Approach -US EPA. Retrieved from https://Www.Epa.Gov/Mosquitocontrol/Success-Mosquito-Control-Integrated-Approach. https://www.epa.gov/mosquitocontrol/success-mosquito-control-integrated-approach

Wirth, M. C., Yang, Y., Walton, W. E., Federici, B. A., & Berry, C. (2007). Mtx Toxins Synergize Bacillus sphaericus and Cry11Aa against Susceptible and Insecticide-Resistant Culex quinquefasciatus Larvae. Applied and Environmental Microbiology, 73(19), 6066–6071. http://dx.doi.org/10.1128/AEM.00654-07

Zhang, D., Wang, Z., & Zhou, W. (2018). Effect of Ca2+, Mg2+, Mn2+ on Growth and Sporulation of Bacillus sp. L15. In Proceedings of the 2018 7th International Conference on Energy, Environment and Sustainable Development (ICEESD 2018). Atlantis Press. http://dx.doi.org/ 10.2991/iceesd-18.2018.74

Author Biographies

Bambang Fajar Suryadi, Universitas Mataram

Ika Mustikasari, Universitas Mataram

Zuriatun Annisa, Universitas Mataram

Sarkono, Universitas Mataram

Galuh Tresnani, Universitas Mataram

License

Copyright (c) 2024 Bambang Fajar Suryadi, Ika Mustikasari, Zuriatun Annisa, Sarkono, Galuh Tresnani

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).