Antioxidant Profile in Pineapple Peel Fermentation by Lactobacillus plantarum and Lactobacillus casei

Authors

Sri Hartini , Margareta N. Cahyanti , Dewi K. A. Kusumahastuti , Indah T. Susilowati , Y. M. Anggara Mahardika

DOI:

10.29303/jppipa.v10i4.7546

Published:

2024-04-30

Issue:

Vol. 10 No. 4 (2024): April

Keywords:

Antioxidant, Lactic acid bacteria, Pineapple peels , Probiotics

Research Articles

Downloads

How to Cite

Hartini, S. ., Cahyanti, M. N., Kusumahastuti, D. K. A., Susilowati, I. T., & Mahardika, Y. M. . A. (2024). Antioxidant Profile in Pineapple Peel Fermentation by Lactobacillus plantarum and Lactobacillus casei . Jurnal Penelitian Pendidikan IPA, 10(4), 2065–2072. https://doi.org/10.29303/jppipa.v10i4.7546

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Pineapple peels are a potential food waste capable of being repurposed as a substrate for producing high-antioxidant probiotic beverages. Therefore, this study aimed to determine the feasibility of using pineapple peels as a substrate for producing high-antioxidant probiotic beverages through fermentation by Lactobacillus plantarum and Lactobacillus casei. Pineapple peels juice was fermented for 48 hours and the growth of microorganisms, reducing sugars, pH, titratable acid, polyphenol compounds, and antioxidant activity were periodically analyzed. The results showed that after 24 hours, the growth of L. plantarum and L. casei gradually slowed down. As fermentation time increased, the levels of reducing sugars and the pH decreased. L. casei reached the highest titratable acidity of 0.90% equivalent to lactic acid after 48 hours of fermentation, while L. plantarum reached 1.21%. The percentage of radical inhibition and phenolic compound increased between 9 and 30 hours of fermentation. The highest inhibition activity of 39% was achieved after 30 hours of fermentation for L. casei, while for L. plantarum, it reached 55% after 9 hours. This study showed that pineapple peels could produce probiotic beverages with high antioxidant. It was a suitable alternative for vegetarians or individuals who were allergic to dairy products.

References

A.R., S., M., S., H.Z., U., Koh, S. P., & Shukor, M. Y. A. (2023). Local pineapple waste as potential bio-ingredient. Food Research. https://doi.org/10.26656/fr.2017.6(s3).002

Abdullah, A. (2017). Solid And Liquid Pineapple Waste Utilization For Lactic Acid Fermentation. Reaktor. https://doi.org/10.14710/reaktor.11.1.50-52

Abraham, R. A., Joshi T, J., & Abdullah, S. (2023). A comprehensive review of pineapple processing and its by-product valorization in India. In Food Chemistry Advances. https://doi.org/10.1016/j.focha.2023.100416

Ancos, B., Sánchez-Moreno, C., & González-Aguilar, G. A. (2016). Pineapple composition and nutrition. In Handbook of Pineapple Technology: Postharvest Science, Processing and Nutrition. https://doi.org/10.1002/9781118967355.ch12

Aparecida Damasceno, K., Alvarenga Gonçalves, C. A., Dos Santos Pereira, G., Lacerda Costa, L., Bastianello Campagnol, P. C., Leal De Almeida, P., & Arantes-Pereira, L. (2016). Development of Cereal Bars Containing Pineapple Peel Flour (Ananas comosus L. Merril). Journal of Food Quality. https://doi.org/10.1111/jfq.12222

Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total Phenolic content, Flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants. https://doi.org/10.3390/plants8040096

Batali, M. E., Cotter, A. R., Frost, S. C., Ristenpart, W. D., & Guinard, J.-X. (2021). Titratable Acidity, Perceived Sourness, and Liking of Acidity in Drip Brewed Coffee. ACS Food Science & Technology. https://doi.org/10.1021/acsfoodscitech.0c00078

BeMiller, J. N. (2017). Carbohydrate Analysis. In Food Analysis. Food Science Text Series (pp. 330–360). Springer, Cham.

Bhat, R., Suryanarayana, L. C., Chandrashekara, K. A., Krishnan, P., Kush, A., & Ravikumar, P. (2015). Lactobacillus plantarum mediated fermentation of Psidium guajava L. fruit extract. Journal of Bioscience and Bioengineering. https://doi.org/10.1016/j.jbiosc.2014.09.007

Bhat, S., Suthar, P., Rafiq, S., Farooq, A., & Sheikh, T. (2022). Pineapple Wastes and By-Products: Chemistry, Processing, and Utilization. In Handbook of Fruit Wastes and By-Products: Chemistry, Processing Technology, and Utilization. https://doi.org/10.1201/9781003164463-19

Bisson, G., Maifreni, M., Innocente, N., & Marino, M. (2023). Application of pre-adaptation strategies to improve the growth of probiotic lactobacilli under food-relevant stressful conditions. Food and Function. https://doi.org/10.1039/d2fo03215e

BPS. (2023). Produksi Tanaman Buah-buahan 2022. https://www.bps.go.id/Indicator/55/62/1/ Produksi-Tanaman-Buah-Buahan.Html.

Cahyanti, M. N., Doddapaneni, T. R. K. C., Madissoo, M., Pärn, L., Virro, I., & Kikas, T. (2021). Torrefaction of agricultural and wood waste: Comparative analysis of selected fuel characteristics. Energies. https://doi.org/10.3390/en14102774

Cerning, J., Renard, C. M. G. C., Thibault, J. F., Bouillanne, C., Landon, M., Desmazeaud, M., & Topisirovic, L. (1994). Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Applied and Environmental Microbiology. https://doi.org/10.1128/aem.60.11.3914-3919.1994

Christopoulos, M., & Ouzounidou, G. (2021). Climate Change Effects on the Perceived and Nutritional Quality of Fruit and Vegetables. Journal of Innovation Economics and Management. https://doi.org/10.3917/jie.034.0079

Cornelia, M., & Kristyanti, T. (2021). Utilization of Pineapple’s (Ananas comosus L. Merr) Peel Waste as Raw Material in Cider Making. https://doi.org/10.5220/0010041402580263

Cosme, P., Rodríguez, A. B., Espino, J., & Garrido, M. (2020). Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. In Antioxidants. https://doi.org/10.3390/antiox9121263

Cui, Y., Wang, M., Zheng, Y., Miao, K., & Qu, X. (2021). The carbohydrate metabolism of lactiplantibacillus plantarum. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms222413452

Hasan, K. (2022). Determination of Protein Content by Spectrophotometric Method and Fat Content by Soxhletation Method on Purple Kopek Eggplant and Green Kopek Eggplant. Jurnal Matematika Dan Ilmu Pengetahuan Alam LLDikti Wilayah 1 (JUMPA). https://doi.org/10.54076/jumpa.v2i2.229

He, Z., Zhang, H., Wang, T., Wang, R., & Luo, X. (2022). Effects of Five Different Lactic Acid Bacteria on Bioactive Components and Volatile Compounds of Oat. Foods. https://doi.org/10.3390/foods11203230

Hidayat, U., & Yunita, N. P. (2022). Penentuan Kadar Gula Reduksi dan Kadar Protein secara Spektrofotometri, serta Uji Organoleptik Produk Nata de Leri Hasil Optimalisasi Asam Asetat Glasial. Jurnal Penelitian Inovatif. https://doi.org/10.54082/jupin.76

Irmayanti, I., Hakim, L., Makmur, T., Rizki, P.; Ar, C. (2020). The Effect of Lactobacillus Casei and Sucrose Concentrations on the Microbiology and Chemical Characteristics of Tofu Waste-Based Probiotic Drinks. Proceedings Of International Conference On Multidiciplinary Research, 80–86.

Jagannath, A., & K, S. (2020). Multi Target Preservation as an Effective Post-harvest Processing Technology for the Chemical and Microbiological Stability of Pineapple (Ananus Comosus). International Journal of Fruit Science. https://doi.org/10.1080/15538362.2020.1755411

Jin, X., Chen, W., Chen, H., Chen, W., & Zhong, Q. (2018). Comparative Evaluation of the Antioxidant Capacities and Organic Acid and Volatile Contents of Mango Slurries Fermented with Six Different Probiotic Microorganisms. Journal of Food Science. https://doi.org/10.1111/1750-3841.14373

Kim, N. J., Jang, H. L., & Yoon, K. Y. (2012). Potato juice fermented with Lactobacillus casei as a probiotic functional beverage. Food Science and Biotechnology. https://doi.org/10.1007/s10068-012-0171-5

Kodagoda, K. (2017). Development of non-alcoholic wines from the wastes of Mauritius pineapple variety and its physicochemical properties KHGK Kodagoda and RAUJ Marapana. Journal of Pharmacognosy and Phytochemistry.

Kondybayev, A., Konuspayeva, G., Strub, C., Loiseau, G., Mestres, C., Grabulos, J., Manzano, M., Akhmetsadykova, S., & Achir, N. (2022). Growth and Metabolism of Lacticaseibacillus casei and Lactobacillus kefiri Isolated from Qymyz, a Traditional Fermented Central Asian Beverage. Fermentation. https://doi.org/10.3390/fermentation8080367

Kumar, P., Tanwar, R., Gupta, V., Upadhyay, A., Kumar, A., & Gaikwad, K. K. (2021). Pineapple peel extract incorporated poly(vinyl alcohol)-corn starch film for active food packaging: Preparation, characterization and antioxidant activity. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2021.07.136

Leneveu-Jenvrin, C., Quentin, B., Assemat, S., & Remize, F. (2020). Maintaining physicochemical, microbiological, and sensory quality of pineapple juice (Ananas comosus, Var. ’Queen Victoria’) through mild heat treatment. Processes. https://doi.org/10.3390/PR8091186

Li, T., Jiang, T., Liu, N., Wu, C., Xu, H., & Lei, H. (2021). Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chemistry. https://doi.org/10.1016/j.foodchem.2020.127859

Malik, M., Bora, J., & Sharma, V. (2019). Growth studies of potentially probiotic lactic acid bacteria (Lactobacillus plantarum, Lactobacillus acidophilus, and Lactobacillus casei) in carrot and beetroot juice substrates. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.14214

Mirmohammadi, R., Zamindar, N., Razavi, S. H., Mirmohammadi, M., & Paidari, S. (2021). Investigation of the possibility of fermentation of red grape juice and rice flour by Lactobacillus plantarum and Lactobacillus casei. Food Science and Nutrition. https://doi.org/10.1002/fsn3.2461

Parhi, P., Song, K. P., & Choo, W. S. (2021). Effect of inulin and fructooligosaccharide supplementation on the growth and survival of Lactobacillus casei in model sugar systems. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.15228

Rivera, A. M. P., Toro, C. R., Londoño, L., Bolivar, G., Ascacio, J. A., & Aguilar, C. N. (2023). Bioprocessing of pineapple waste biomass for sustainable production of bioactive compounds with high antioxidant activity. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-022-01627-4

Roda, A., & Lambri, M. (2019). Food uses of pineapple waste and by-products: a review. In International Journal of Food Science and Technology. https://doi.org/10.1111/ijfs.14128

Romelle, F. D., Rani, P. A., & Manohar, R. S. (2018). Chemical Composition of Some Selected Fruit Peels. European Journal of Food Science and Technology.

Saraswaty, V., Risdian, C., Primadona, I., Andriyani, R., Andayani, D. G. S., & Mozef, T. (2017). Pineapple peel wastes as a potential source of antioxidant compounds. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/60/1/012013

Śliżewska, K., & Chlebicz-Wójcik, A. (2020). Growth kinetics of probiotic lactobacillus strains in the alternative, cost-efficient semi-solid fermentation medium. Biology. https://doi.org/10.3390/biology9120423

Urdaneta, D., Raffe, D., Ferrer, A., de Ferrer, B. S., Cabrera, L., & Pérez, M. (1995). Short-chain organic acids produced on glucose, lactose, and citrate media by Enterococcus faecalis, Lactobacillus casei, and Enterobacter aerogenes strains. Bioresource Technology. https://doi.org/10.1016/0960-8524(95)00103-4

Yoon, K. Y., Woodams, E. E., & Hang, Y. D. (2006). Production of probiotic cabbage juice by lactic acid bacteria. Bioresource Technology. https://doi.org/10.1016/j.biortech.2005.06.018

Zubaidah, E., Arum, M. S., Dewanti, T., Rahayu, A. P., Srianta, I., & Tewfik, I. (2023). Sauerkraut inoculated with Lactobacillus casei as a potent immunomodulator in Escherichia coli infected mice. Food Research. https://doi.org/10.26656/fr.2017.7(2).586

Zulfikar, A., Putri, N. P. S. N. K., & Tajalla, G. U. N. (2020). Studi Pengaruh Waktu Alkalisasi pada Ekstraksi Selulosa Berbasis Serat Eceng Gondok (Eichhornia crassipes). SPECTA Journal of Technology. https://doi.org/10.35718/specta.v4i2.182

Author Biographies

Margareta N. Cahyanti, Satya Wacana Christian University

Dewi K. A. Kusumahastuti, Satya Wacana Christian University

Indah T. Susilowati, STIKES Nasional, Sukoharjo

Y. M. Anggara Mahardika, Insitute Teknologi Sains dan Kesehatan Sugeng Hartono

License

Copyright (c) 2024 Sri Hartini, Margareta N. Cahyanti, Dewi K. A. Kusumahastuti, Indah T. Susilowati, Y. M. Anggara Mahardika

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).