Multivariate Imputation Chained Equation on Solar Radiation in Automatic Weather Station

Authors

Gema Akbar , Prawito Prajitno , Ariffudin , Naufal Ananda

DOI:

10.29303/jppipa.v10i7.7679

Published:

2024-07-25

Issue:

Vol. 10 No. 7 (2024): July

Keywords:

AWS, Imputation, MICE, Missing data, Solar radiation

Research Articles

Downloads

How to Cite

Akbar, G., Prajitno, P., Ariffudin, & Ananda, N. (2024). Multivariate Imputation Chained Equation on Solar Radiation in Automatic Weather Station. Jurnal Penelitian Pendidikan IPA, 10(7), 3633–3639. https://doi.org/10.29303/jppipa.v10i7.7679

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Solar radiation is one of the crucial weather observation variables Its variable has a role in renewable energy solutions, agriculture, meteorology, and hydrology. AWS is one of instrument that use to observing weather especially solar radiation. AWS has a pyranometer sensor used to measure solar radiation. Unfortunately, the instrument has problem like the igh cost of supplying, installing, maintaining, and calibrating the equipment. Due to this, there is a lot of empty data, and the actual data cannot be properly measured.  Imputation of solar radiation data using MICE algorithm can be solution. This study using BLR, NRR and RFR estimator to estimating solar radiation data. AWS Staklim Banten as target and other AWS as input. The period from January 1, 2018 - February 12, 2024. The performance evaluation of the solar radiation imputation estimator is still according to WMO operational requirements for solar radiation measurements, which can be seen from the resulting MAPE value < 8%.

References

Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6

Abu Bakar, N. F., Amira Othman, S., Amirah Nor Azman, N. F., & Saqinah Jasrin, N. (2019). Effect of ionizing radiation towards human health: A review. IOP Conference Series: Earth and Environmental Science, 268(1), 012005. https://doi.org/10.1088/1755-1315/268/1/012005

Ağbulut, Ü., Gürel, A. E., & Biçen, Y. (2021). Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable and Sustainable Energy Reviews, 135, 110114. https://doi.org/10.1016/j.rser.2020.110114

Al-Quraan, A., Darwish, H., & Malkawi, A. M. A. (2023). Renewable Energy Role in Climate Stabilization and Water Consumption Minimization in Jordan. Processes, 11(8), 2369. https://doi.org/10.3390/pr11082369

Ananda, N., Hartanto, H., & Kurniadi, D. (2023). Preliminary Evaluation of Weather Radar Rainfall Estimation in Bandung City. In 2023 8th International Conference on Instrumentation, Control, and Automation (ICA) (pp. 76–80). IEEE. https://doi.org/10.1109/ICA58538.2023.10273091

Babikir, M. H., Njomo, D., Khayal, M. Y., Temene, H. D., & Joel, D. T. (2018). Estimation of Direct Solar Radiation of Chad. Energy and Power Engineering, 10(05), 212–225. https://doi.org/10.4236/epe.2018.105015

Baltazar, J.-C., Sun, Y., & Haberl, J. (2014). Improved Methodology to Measure Normal Incident Solar Radiation with a Multi-pyranometer Array. Energy Procedia, 57, 1211–1219. https://doi.org/10.1016/j.egypro.2014.10.109

Betancur, S., Ortega-Avila, N., & López-Vidaña, E. C. (2023). Strengths, Weaknesses, Opportunities, and Threats Analysis for the Strengthening of Solar Thermal Energy in Colombia. Resources, 13(1), 3. https://doi.org/10.3390/resources13010003

Buuren, S. Van, & Groothuis-Oudshoorn, K. (2011). Mice : Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3). https://doi.org/10.18637/jss.v045.i03

Chowdhury, M. S., Rahman, K. S., Chowdhury, T., Nuthammachot, N., Techato, K., Akhtaruzzaman, M., Tiong, S. K., Sopian, K., & Amin, N. (2020). An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews, 27, 100431. https://doi.org/10.1016/j.esr.2019.100431

Costantini, E., Lang, K. M., Sijtsma, K., & Reeskens, T. (2023). Solving the many-variables problem in MICE with principal component regression. Behavior Research Methods, 56(3), 1715–1737. https://doi.org/10.3758/s13428-023-02117-1

Durand, M., Murchie, E. H., Lindfors, A. V., Urban, O., Aphalo, P. J., & Robson, T. M. (2021). Diffuse solar radiation and canopy photosynthesis in a changing environment. Agricultural and Forest Meteorology, 311, 108684. https://doi.org/10.1016/j.agrformet.2021.108684

Elasra, A. (2022). Multiple Imputation of Missing Data in Educational Production Functions. Computation, 10(4), 49. https://doi.org/10.3390/computation10040049

Elbasiouny, H., El-Ramady, H., Elbehiry, F., Rajput, V. D., Minkina, T., & Mandzhieva, S. (2022). Plant Nutrition under Climate Change and Soil Carbon Sequestration. Sustainability, 14(2), 914. https://doi.org/10.3390/su14020914

Engeland, K., Borga, M., Creutin, J.-D., François, B., Ramos, M.-H., & Vidal, J.-P. (2017). Space-time variability of climate variables and intermittent renewable electricity production – A review. Renewable and Sustainable Energy Reviews, 79, 600–617. https://doi.org/10.1016/j.rser.2017.05.046

Geuder, N., Wolfertstetter, F., Wilbert, S., Schüler, D., Affolter, R., Kraas, B., Lüpfert, E., & Espinar, B. (2015). Screening and Flagging of Solar Irradiation and Ancillary Meteorological Data. Energy Procedia, 69, 1989–1998. https://doi.org/10.1016/j.egypro.2015.03.205

Haque, M. E., Alvi, M. M., Rahman, M. F., Ali, M. H., & Haque, A. K. M. M. (2022). Cost Effective Alternative of Pyranometer: Solar Radiation Prediction Using Artificial Intelligence. In 2022 International Conference on Recent Progresses in Science, Engineering and Technology (ICRPSET) (pp. 1–5). IEEE. https://doi.org/10.1109/ICRPSET57982.2022.10188547

Joe, P., Sun, J., Yussouf, N., Goodman, S., Riemer, M., Gouda, K. C., Golding, B., Rogers, R., Isaac, G., Wilson, J., Li, P. W. P., Wulfmeyer, V., Elmore, K., Onvlee, J., Chong, P., & Ladue, J. (2022). Predicting the Weather: A Partnership of Observation Scientists and Forecasters. In B. Golding (Ed.), Towards the “Perfect” Weather Warning (pp. 201–254). Springer International Publishing.

Keenan, T. F., Luo, X., Stocker, B. D., De Kauwe, M. G., Medlyn, B. E., Prentice, I. C., Smith, N. G., Terrer, C., Wang, H., Zhang, Y., & Zhou, S. (2023). A constraint on historic growth in global photosynthesis due to rising CO2. Nature Climate Change, 13(12), 1376–1381. https://doi.org/10.1038/s41558-023-01867-2

Khalil, S. A. (2022). A Comprehensive Study of Solar Energy Components by Using Various Models on Horizontal and Inclined Surfaces for Different Climate Zones. Energy and Power Engineering, 14(10), 558–593. https://doi.org/10.4236/epe.2022.1410031

Kisi, O., Alizamir, M., Trajkovic, S., Shiri, J., & Kim, S. (2020). Solar Radiation Estimation in Mediterranean Climate by Weather Variables Using a Novel Bayesian Model Averaging and Machine Learning Methods. Neural Processing Letters, 52(3), 2297–2318. https://doi.org/10.1007/s11063-020-10350-4

Korevaar, M. A. N. (2022). Measuring Solar Irradiance for Photovoltaics. In M. Aghaei (Ed.), Solar Radiation - Measurement, Modeling and Forecasting Techniques for Photovoltaic Solar Energy Applications. IntechOpen.

Krishnan, N., Kumar, K. R., & Inda, C. S. (2023). How solar radiation forecasting impacts the utilization of solar energy: A critical review. Journal of Cleaner Production, 388, 135860. https://doi.org/10.1016/j.jclepro.2023.135860

Liu, D., He, C., Schwarz, J. P., & Wang, X. (2020). Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere. Npj Climate and Atmospheric Science, 3(1), 40. https://doi.org/10.1038/s41612-020-00145-8

Maleki, S. M., Hizam, H., & Gomes, C. (2017). Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited. Energies, 10(1), 134. https://doi.org/10.3390/en10010134

Mamassis, N., Efstratiadis, A., & Apostolidou, I.-G. (2012). Topography-adjusted solar radiation indices and their importance in hydrology. Hydrological Sciences Journal, 57(4), 756–775. https://doi.org/10.1080/02626667.2012.670703

Masson, V., Bonhomme, M., Salagnac, J.-L., Briottet, X., & Lemonsu, A. (2014). Solar panels reduce both global warming and urban heat island. Frontiers in Environmental Science, 2. https://doi.org/10.3389/fenvs.2014.00014

Mubarak, R., Hofmann, M., Riechelmann, S., & Seckmeyer, G. (2017). Comparison of Modelled and Measured Tilted Solar Irradiance for Photovoltaic Applications. Energies, 10(11), 1688. https://doi.org/10.3390/en10111688

Narvaez, G., Giraldo, L. F., Bressan, M., & Pantoja, A. (2021). Machine learning for site-adaptation and solar radiation forecasting. Renewable Energy, 167, 333–342. https://doi.org/10.1016/j.renene.2020.11.089

Nsabagwa, M., Byamukama, M., Kondela, E., & Otim, J. S. (2019). Towards a robust and affordable Automatic Weather Station. Development Engineering, 4, 100040. https://doi.org/10.1016/j.deveng.2018.100040

Ort, D. R., Chinnusamy, V., & Pareek, A. (2022). Photosynthesis: diving deep into the process in the era of climate change. Plant Physiology Reports, 27(4), 539–542. https://doi.org/10.1007/s40502-022-00703-7

Pahlepi, R., Soekirno, S., & Wicaksana, H. S. (2023). Solar Radiation Intensity Imputation in Pyranometer of Automatic Weather Station Based on Long Short Term Memory. Ultima Computing : Jurnal Sistem Komputer, 35–40. https://doi.org/10.31937/sk.v15i2.3348

Paszkuta, M., Markowski, M., & Krężel, A. (2024). Empirical Verification of Satellite Data on Solar Radiation and Cloud Cover over the Baltic Sea. Journal of Atmospheric and Oceanic Technology, 41(2), 161–178. https://doi.org/10.1175/JTECH-D-23-0061.1

Shams, M. Y., Tarek, Z., El-kenawy, E.-S. M., Eid, M. M., & Elshewey, A. M. (2024). Predicting Gross Domestic Product (GDP) using a PC-LSTM-RNN model in urban profiling areas. Computational Urban Science, 4(1), 3. https://doi.org/10.1007/s43762-024-00116-2

Stamatis, M., Ioannou, P., Korras-Carraca, M.-B., & Hatzianastassiou, N. (2023). The Global and Diffuse Solar Radiation Trends Using GEBA & BSRN Ground Based Measurements during 1984–2018. In The 3rd International Electronic Conference on Atmospheric Sciences (p. 141). MDPI. https://doi.org/10.3390/environsciproc2023026141

Tkachenko, R., Izonin, I., Kryvinska, N., Dronyuk, I., & Zub, K. (2020). An Approach towards Increasing Prediction Accuracy for the Recovery of Missing IoT Data based on the GRNN-SGTM Ensemble. Sensors, 20(9), 2625. https://doi.org/10.3390/s20092625

Turrado, C., López, M., Lasheras, F., Gómez, B., Rollé, J., & Juez, F. (2014). Missing Data Imputation of Solar Radiation Data under Different Atmospheric Conditions. Sensors, 14(11), 20382–20399. https://doi.org/10.3390/s141120382

Victoria, M., Haegel, N., Peters, I. M., Sinton, R., Jäger-Waldau, A., Del Cañizo, C., Breyer, C., Stocks, M., Blakers, A., Kaizuka, I., Komoto, K., & Smets, A. (2021). Solar photovoltaics is ready to power a sustainable future. Joule, 5(5), 1041–1056. https://doi.org/10.1016/j.joule.2021.03.005

Wicaksana, H. S., Winarko, S., & Kurniadi, D. (2023). Treatment on Missing Data of Wind Speed Measurement in Automatic Weather Station Using Multivariate Imputation Chained Equation. In 2023 8th International Conference on Instrumentation, Control, and Automation (ICA) (pp. 81–85). IEEE. https://doi.org/10.1109/ICA58538.2023.10273106

Yu, Y., Tang, Y., Chou, J., & Yang, L. (2023). A novel adaptive approach for improvement in the estimation of hourly diffuse solar radiation: A case study of China. Energy Conversion and Management, 293, 117455. https://doi.org/10.1016/j.enconman.2023.117455

Author Biographies

Gema Akbar, Universitas Indonesia

Prawito Prajitno, Universitas Indonesia

Ariffudin, Universitas Indonesia

Naufal Ananda, Meteorological Climatological Agency Indonesia

License

Copyright (c) 2024 Gema Akbar, Prawito Prajitno, Ariffudin, Naufal Ananda

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).