Characterization of Fiber Bragg Grating Accelerometer for Underwater Vibration Detection

Authors

Juan Michael Kane Gani , Retno Wigajatri Purnamaningsih , Sasono Rahardjo

DOI:

10.29303/jppipa.v10i6.7760

Published:

2024-06-25

Issue:

Vol. 10 No. 6 (2024): June

Keywords:

Fiber Bragg Grating, Vibration Detection, Wavelength

Research Articles

Downloads

How to Cite

Gani, J. M. K., Purnamaningsih, R. W., & Rahardjo, S. (2024). Characterization of Fiber Bragg Grating Accelerometer for Underwater Vibration Detection. Jurnal Penelitian Pendidikan IPA, 10(6), 3221–3227. https://doi.org/10.29303/jppipa.v10i6.7760

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

In this paper, the results of the characterization of a Fiber Bragg Grating (FBG) Accelerometer for detecting vibrations underwater are reported. The FBG Accelerometer, consisting of three FBGs, is utilized to detect underwater vibrations in three-dimensional directions. A water pump, with positions varied from 0 to 10 cm, is employed as the vibration source. Furthermore, the experimental results are presented in the form of the peak wavelength shift reflected by the FBG (ΔλB) and frequency. From the experiment results, it is shown that with increasing distance, ΔλB decreases linearly with successive gradients of 0.0058 nm/cm; 0.0059 nm/cm; and 0.0045 nm/cm. for FBG X, Y, and Z. It is also shown that with increasing distance, there is a decrease in frequency from 50 Hz for FBGs X, Y, and Z to 39 Hz; 38 Hz; and 40 Hz for FBGs X, Y, and Z respectively.

References

Dong, L., Xie, W., Wang, C., Zheng, X., Yang, J., Yang, Q., Yin, Y., Wei, W., & Dong, Y. (2023). Enhanced Precision in Frequency and Phase Spectrum in Optical Frequency Domain Reflectometry Using Zoom-FFT Based Spectrum Refinement. ICAIT 2023 - 2023 IEEE 15th International Conference on Advanced Infocomm Technology, 312–315. https://doi.org/10.1109/ICAIT59485.2023.10367275

Duggal, R., Gupta, N., Pandya, A., Mahajan, P., Sharma, K., kaundal, T., & Angra, P. (2022). Building structural analysis based Internet of Things network assisted earthquake detection. Internet of Things, 19, 100561. https://doi.org/https://doi.org/10.1016/j.iot.2022.100561

Feng, D., Qiao, X., Yang, H., Rong, Q., Wang, R., Du, Y., Hu, M., & Feng, Z. (2015). A Fiber Bragg Grating Accelerometer Based on a Hybridization of Cantilever Beam. IEEE Sensors Journal, 15(3), 1532–1537. https://doi.org/10.1109/JSEN.2014.2364122

Guo, T., Wang, Y., Li, S., Li, X., & Qiao, X. (2023). High-Sensitivity Three-Axis FBG Accelerometer Based on Elliptical Spring. IEEE Transactions on Instrumentation and Measurement, 72, 1–8. https://doi.org/10.1109/TIM.2022.3228277

Hou, X., Zheng, Y., Jiang, M., & Zhang, S. (2023). SEA-net: Sequence attention network for seismic event detection and phase arrival picking. Engineering Applications of Artificial Intelligence, 122, 106090. https://doi.org/https://doi.org/10.1016/j.engappai.2023.106090

Jena, R., Pradhan, B., Beydoun, G., Alamri, A. M., Ardiansyah, Nizamuddin, & Sofyan, H. (2020). Earthquake hazard and risk assessment using machine learning approaches at Palu, Indonesia. Science of The Total Environment, 749, 141582. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141582

Kustianto, I., Purnamaningsih, R. W., Rahardjo, S., Hamidah, M., & Firdaus, M. Y. (2023). Water Temperature Measurement Using Fiber Bragg Grating. Jurnal Penelitian Pendidikan IPA, 9(11), 9341–9345. https://doi.org/10.29303/jppipa.v9i11.3972

Lan, D., Li, J., Chen, J., & Xu, Q. (2022). Floor response spectra of offshore electrical platform under sea waves and earthquake. Ocean Engineering, 265, 112623. https://doi.org/https://doi.org/10.1016/j.oceaneng.2022.112623

Le, H.-D., Chiang, C.-C., Nguyen, C.-N., & Hsu, H.-C. (2023). A 2-D Fiber Bragg Grating Acceleration Sensor Based on Circular Flexure Hinges Structure. IEEE Transactions on Instrumentation and Measurement, 72, 1–11. https://doi.org/10.1109/TIM.2023.3280539

Le, H.-D., Hsu, H.-C., Weng, Y.-Q., Nguyen, C.-N., & Chiang, C.-C. (2022). Design a Fiber Bragg Grating Accelerometer-Based Using a Cantilever Beam Structure. 2022 International Conference on Control, Robotics and Informatics (ICCRI), 43–47. https://doi.org/10.1109/ICCRI55461.2022.00014

Li, J., Shen, B., Zhao, D., Zhang, W., & Sun, B. (2022). A High-sensitivity FBG Accelerometer Based on a Bearing. Journal of Lightwave Technology, 40(1), 228–236. https://doi.org/10.1109/JLT.2021.3117867

Li, J., Yang, D., Jiang, Y., Liu, C., Li, X., Zou, J., Chong, Y., Lv, R., Bin, Q., Yan, J., Yuan, P., Ding, X., Li, W., Pan, D., Hao, C., & Li, D. (2023). Cascadable Four-Core Fiber Bragg Gratings Accelerometer for 2-D Low-Frequency Vibration Measurement. IEEE Sensors Journal, 23(19), 22373–22379. https://doi.org/10.1109/JSEN.2023.3298430

Li, Y., Chen, F., Guo, T., Wang, R., & Qiao, X. (2022). Sensitivity Enhancement of Fiber Bragg Grating Accelerometer Based on Short Grating. IEEE Transactions on Instrumentation and Measurement, 71. https://doi.org/10.1109/TIM.2021.3126848

Li, Z. (2021). Recent advances in earthquake monitoring I: Ongoing revolution of seismic instrumentation. Earthquake Science, 34(2), 177–188. https://doi.org/https://doi.org/10.29382/eqs-2021-0011

Made Rai Ratih Cahya Perbani, N. (2018). Deteksi Komponen Frekuensi Rendah pada Tinggi Muka Laut Akibat Pengaruh Gempa Bawah Laut di Stasiun Padang. In ITB Indonesian Journal of Geospatial (Vol. 05, Issue 1).

Martínez-Osuna, J. F., Ocampo-Torres, F. J., Gutiérrez-Loza, L., Valenzuela, E., Castro, A., Alcaraz, R., Rodríguez, C., & Ulloa, L. R. (2021). Coastal buoy data acquisition and telemetry system for monitoring oceanographic and meteorological variables in the Gulf of Mexico. Measurement, 183, 109841. https://doi.org/https://doi.org/10.1016/j.measurement.2021.109841

Nguyen, T. T.-V., Le, H.-D., Hsu, H.-C., Nguyen, C.-N., & Chiang, C.-C. (2023). An Optical Fiber Acceleration Sensor Based on a V-Shaped Flexure Hinge Structure. IEEE Sensors Journal, 23(14), 15586–15596. https://doi.org/10.1109/JSEN.2023.3280166

Pan, X., Dong, Y., Zheng, J., Wen, J., Pang, F., Chen, Z., Shang, Y., & Wang, T. (2019). Enhanced FBG Temperature Sensitivity in PbS-Doped Silica Optical Fiber. Journal of Lightwave Technology, 37(18), 4902–4907. https://doi.org/10.1109/JLT.2019.2937138

Parida, O. P., Thomas, J., Nayak, J., & Asokan, S. (2019). Double-L Cantilever-Based Fiber Bragg Grating Accelerometer. IEEE Sensors Journal, 19(23), 11247–11254. https://doi.org/10.1109/JSEN.2019.2936463

Qian, G., Peng, Q., Zhang, Z., Li, M., Wu, K., & Song, Y. (2021). Development of FBG Transformer Vibration Sensor Based on Cantilever Beam Structure. International Conference on Advanced Electrical Equipment and Reliable Operation, AEERO 2021. https://doi.org/10.1109/AEERO52475.2021.9708350

Ramdani, F., Setiani, P., & Setiawati, D. A. (2019). Analysis of sequence earthquake of Lombok Island, Indonesia. Progress in Disaster Science, 4, 100046. https://doi.org/https://doi.org/10.1016/j.pdisas.2019.100046

Shen, H., Huang, C., Dong, Y., Wen, J., Zhang, X., Pang, F., & Wang, T. (2023). Radiation Sensitive Long-Period Fiber Grating Based on Tb-Doped Silica Fiber. IEEE Transactions on Nuclear Science, 70(3), 228–234. https://doi.org/10.1109/TNS.2023.3244571

Sianipar, D., Daryono, D., Halauwet, Y., Ulfiana, E., Sipayung, R., Daniarsyad, G., Heryandoko, N., Prasetyo, R. A., Serhalawan, Y., & Karnawati, D. (2022). Intense foreshock swarm preceding the 2019 MW 6.5 Ambon (Seram, Indonesia) earthquake and its implication for the earthquake nucleation process. Physics of the Earth and Planetary Interiors, 322, 106828. https://doi.org/https://doi.org/10.1016/j.pepi.2021.106828

Supendi, P., Sianipar, D., Widiyantoro, S., Rawlinson, N., Daryono, Prayitno, B. S., Gunawan, M. T., Sadly, M., Karnawati, D., Nugraha, A. D., Palgunadi, K. H., Muttaqy, F., & Rahayu, T. (2022). Analysis of the April 10, 2021 (Mw 6.1) destructive intra-slab earthquake, East Java, Indonesia. Physics of the Earth and Planetary Interiors, 326, 106866. https://doi.org/https://doi.org/10.1016/j.pepi.2022.106866

Teng, Y., Ge, L., Fan, X., Ge, C., & Ma, J. (2024). Dual straight-wing FBG accelerometer for low-frequency vibration measurement. Optics Communications, 563, 130590. https://doi.org/https://doi.org/10.1016/j.optcom.2024.130590

Wang, H., Yan, B., & Liang, L. (2021). A 3D FBG Accelerometer Based on Two Pairs of Flexible Hinges. IEEE Sensors Journal, 21(19), 21586–21593. https://doi.org/10.1109/JSEN.2021.3102035

Wang, L., Xiao, C., Ding, W., Wu, J., & Shi, C. (2022). Application Overview of Fiber Bragg Grating Sensors in Structural Health Monitoring. IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2022-October, 1946–1950. https://doi.org/10.1109/IAEAC54830.2022.9929863

Wang, X., Guo, Y., Xiong, L., & Wu, H. (2018). High-Frequency Optical Fiber Bragg Grating Accelerometer. IEEE Sensors Journal, 18(12), 4954–4960. https://doi.org/10.1109/JSEN.2018.2833885

Wibowo, A., Purnama, S. R., Pratama, C., Heliani, L. S., Sahara, D. P., & Wibowo, S. T. (2023). Anomaly detection on displacement rates and deformation pattern features using tree-based algorithm in Japan and Indonesia. Geodesy and Geodynamics, 14(2), 150–162. https://doi.org/https://doi.org/10.1016/j.geog.2022.07.003

Xu, Y., Fan, W., Gao, H., & Qiao, X. (2024). Fiber Bragg Grating low-frequency accelerometer based on spring structure. Optical Fiber Technology, 82, 103614. https://doi.org/https://doi.org/10.1016/j.yofte.2023.103614

Yan, B., & Liang, L. (2020). A Novel Fiber Bragg Grating Accelerometer Based on Parallel Double Flexible Hinges. IEEE Sensors Journal, 20(9), 4713–4718. https://doi.org/10.1109/JSEN.2019.2925017

Yang, T., Xiao, Y., Ran, Z., He, X., Shao, T., Wang, W., Li, K., Sun, D., Qin, X., He, Z., Zhang, Y., & Ye, D. (2021). Design of a Weak Fiber Bragg Grating Acoustic Sensing System for Pipeline Leakage Monitoring in a Nuclear Environment. IEEE Sensors Journal, 21(20), 22703–22711. https://doi.org/10.1109/JSEN.2021.3098313

Yang, X., Wei, D., Kou, X., & Huang, J. (2020). Research on Key Technologies of Miniaturization of Fiber Bragg Grating Sensor Signal Demodulation Equipment. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), 900–903. https://doi.org/10.1109/ITOEC49072.2020.9141679

Zhang, H., Wang, Y., Wen, G., Jia, D., & Liu, T. (2018). Frequency demodulation of dynamic stress based on distributed polarization coupling system. Journal of Lightwave Technology, 36(11), 2094–2099. https://doi.org/10.1109/JLT.2018.2804479

Zhang, L., Liu, M., Hong, L., Li, C., & Zhou, Z. (2022). Design and Optimization of an FBG Accelerometer Based on Single-Notch Circular Flexure Hinge for Medium-Frequency Vibration Measurement. IEEE Sensors Journal, 22(21), 20303–20311. https://doi.org/10.1109/JSEN.2022.3207780

Author Biographies

Juan Michael Kane Gani, Departemen Teknik Elektro, Universitas Indonesia, Depok, Indonesia

Retno Wigajatri Purnamaningsih, Departemen Teknik Elektro, Universitas Indonesia, Depok, Indonesia

Sasono Rahardjo, Pusat Riset Elektronika, Badan Riset dan Inovasi Nasional, Jakarta, Indonesia

License

Copyright (c) 2024 Juan Michael Kane Gani, Retno Wigajatri Purnamaningsih, Sasono Rahardjo

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).