A Systematic Review of the Trends Thin Film Characteristics Research as Electronic Device (2015-2024)


Susilawati Susilawati , Aris Doyan , Agus Abi Purwoko , Ibrahim Ibrahim , Sukainil Ahzan , Sifaul Gummah , Bahtiar Bahtiar , Muhammad Ikhsan , Syamsul Hakim , Lalu Muliyadi , Haris Munandar






Vol. 10 No. 6 (2024): June


Characteristic, Electronic device, Thin film, Review



How to Cite

Susilawati, S., Doyan, A., Purwoko, A. A., Ibrahim, I., Ahzan, S., Gummah, S., … Munandar, H. (2024). A Systematic Review of the Trends Thin Film Characteristics Research as Electronic Device (2015-2024). Jurnal Penelitian Pendidikan IPA, 10(6), 313–322. https://doi.org/10.29303/jppipa.v10i6.7812


Download data is not yet available.


Metrics Loading ...


Thin film characteristics are the properties possessed by the thin film, both physical and chemical properties. The characteristics of this thin film are influenced by several factors, namely the material that makes up the thin film, the thin film deposition method, and the conditions of the thin film deposition process. This research aims to identify and analyze research trends in the characteristics of thin films as electronic devices. This research method is descriptive and analytical. The data used in this research was obtained from documents indexed by Google Scholar from 2015-2024 using Publish or Perish and Dimension.ai. Research procedures use PRISMA guidelines. The data identified and analyzed are the type of publication, publication source, and the title of research on thin film synthesis that is widely cited. The data analysis method uses bibliometric analysis assisted by VOSviewer software. The results of the analysis show that the trend of research on the characteristics of thin films as electronic devices indexed by Google Scholar from 2015 to 2024 experienced a fluctuating increase, however, in 2023 there was a decline in the trend of research on the characteristics of thin films as electronic devices. There are many documents in the form of articles, proceedings, book chapters, preprints, and edited books that discuss research into the characteristics of thin films as electronic devices. Key words that are often used in research on the characteristics of thin films as electronic devices are thin film coating, heat transfer characteristic, film characteristic, and photovoltaic characteristic.


Amalathas, A. P., & Alkaisi, M. (2019). Nanostructures for Light Trapping in Thin Film Solar Cells. Micromachines, 10(9), 619. https://doi.org/10.3390/mi10090619

An-Nufuus, D. A. T., Rumhayati, B., Fardiyah, Q., Mardiana, D., Andayani, U., & Dinira, L. (2023). Diffusion Coefficient of Phosphate Ion in Citric Acid-Agarose Gel Used in Diffusive Gradient in Thin Films (DGT) Passive Sampler. Jurnal Penelitian Pendidikan IPA, 9(8), 6035–6044. https://doi.org/10.29303/jppipa.v9i8.3593

Bahtiar, B., Yusuf, Y., Doyan, A., & Ibrahim, I. (2023). Trend of Technology Pedagogical Content Knowledge (TPACK) Research in 2012-2022: Contribution to Science Learning of 21st Century. Jurnal Penelitian Pendidikan IPA, 9(5), 39–47. https://doi.org/10.29303/jppipa.v9i5.3685

Buyanova, I., Altukhov, I., Tsuglenok, N., Krieger, O., & Kashirskih, E. (2019). Pulsed infrared radiation for drying raw materials of plant and animal origin. Foods and Raw Materials, 7(1), 151–160. https://doi.org/10.21603/2308-4057-2019-1-151-160

Chen, H.-I., Hsiao, C.-Y., Chen, W.-C., Chang, C.-H., Chou, T.-C., Liu, I.-P., Lin, K.-W., & Liu, W.-C. (2018). Characteristics of a Pt/NiO thin film-based ammonia gas sensor. Sensors and Actuators B: Chemical, 256, 962–967. https://doi.org/10.1016/j.snb.2017.10.032

Chung, S., Cho, K., & Lee, T. (2019). Recent Progress in Inkjet‐Printed Thin‐Film Transistors. Advanced Science, 6(6), 1801445. https://doi.org/10.1002/advs.201801445

Coll, R. C., Hill, J. R., Day, C. J., Zamoshnikova, A., Boucher, D., Massey, N. L., Chitty, J. L., Fraser, J. A., Jennings, M. P., Robertson, A. A. B., & Schroder, K. (2019). MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nature Chemical Biology, 15(6), 556–559. https://doi.org/10.1038/s41589-019-0277-7

Dong, Y., Chertopalov, S., Maleski, K., Anasori, B., Hu, L., Bhattacharya, S., Rao, A. M., Gogotsi, Y., Mochalin, V. N., & Podila, R. (2018). Saturable Absorption in 2D Ti 3 C 2 MXene Thin Films for Passive Photonic Diodes. Advanced Materials, 30(10), 1705714. https://doi.org/10.1002/adma.201705714

Doyan, A., Susilawati, Mahardika, I. K., Rizaldi, D. R., & Fatimah, Z. (2022). Structure and optical properties of Titanium Dioxide thin film with mixed Fluorine and Indium doping for solar cell components. Journal of Physics: Conference Series, 2165(012009), 1–12. https://doi.org/10.1088/1742-6596/2165/1/012009

Doyan, A., Susilawati, Purwoko, A. A., Ibrahim, Ahzan, S., Gummah, S., Bahtiar, & Ikhsan, M. (2023). Trend Synthesis Thin Film Research as Electronic Device (A Review). Jurnal Penelitian Pendidikan IPA, 9(11), 1155–1164. https://doi.org/10.29303/jppipa.v9i11.5764

Doyan, A., Susilawati, S., & Muliyadi, L. (2022). Analysis of the Energy Band Gap of Tin Oxide Thin Layers as Semiconductor Base Materials in Electronic Devices. Jurnal Penelitian Pendidikan IPA, 8(6), 2772–2777. https://doi.org/10.29303/jppipa.v8i6.2657

Efaz, E. T., Rhaman, M. M., Imam, S. Al, Bashar, K. L., Kabir, F., Mourtaza, M. E., Sakib, S. N., & Mozahid, F. A. (2021). A review of primary technologies of thin-film solar cells. Engineering Research Express, 3(3), 032001. https://doi.org/10.1088/2631-8695/ac2353

Fei, C., Liu, X., Zhu, B., Li, D., Yang, X., Yang, Y., & Zhou, Q. (2018). AlN piezoelectric thin films for energy harvesting and acoustic devices. Nano Energy, 51, 146–161. https://doi.org/10.1016/j.nanoen.2018.06.062

Gupta, S., Navaraj, W. T., Lorenzelli, L., & Dahiya, R. (2018). Ultra-thin chips for high-performance flexible electronics. Npj Flexible Electronics, 2(1), 8. https://doi.org/10.1038/s41528-018-0021-5

Hao, Q., Zhao, C., Sun, B., Lu, C., Liu, J., Liu, M., Wan, L.-J., & Wang, D. (2018). Confined Synthesis of Two-Dimensional Covalent Organic Framework Thin Films within Superspreading Water Layer. Journal of the American Chemical Society, 140(38), 12152–12158. https://doi.org/10.1021/jacs.8b07120

Imawanti, Y. D., Doyan, A., & Gunawan, E. R. (2017). Sintesis Lapisan Tipis (Thin Film) SnO2 dan SnO2:Al Menggunakan Teknik Sol-Gel Spin Coating Pada Substrat Kaca dan Quartz. Jurnal Penelitian Pendidikan IPA, 3(1). https://doi.org/10.29303/jppipa.v3i1.49

Jin, L., Bai, J., Zhang, R., Li, L., & Du, X. (2021). Effect of elevated temperature on thelow-velocity impact performances of reinforced concrete slabs. International Journal of Impact Engineering, 149, 103797. https://doi.org/10.1016/j.ijimpeng.2020.103797

Khan, Y., Thielens, A., Muin, S., Ting, J., Baumbauer, C., & Arias, A. C. (2020). A New Frontier of Printed Electronics: Flexible Hybrid Electronics. Advanced Materials, 32(15), 1905279. https://doi.org/10.1002/adma.201905279

Li, X., Li, Q., Fang, W., Wang, R., & Krantz, W. B. (2019). Effects of the support on the characteristics and permselectivity of thin film composite membranes. Journal of Membrane Science, 580, 12–23. https://doi.org/10.1016/j.memsci.2019.03.003

Li, Z., Chen, Z., Yang, Y., Xue, Q., Yip, H. L., & Cao, Y. (2019). Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nature Communications, 10(1), 1027. https://doi.org/10.1038/s41467-019-09011-5

Liang, C., Gu, H., Xia, Y., Wang, Z., Liu, X., Xia, J., Zuo, S., Hu, Y., Gao, X., Hui, W., Chao, L., Niu, T., Fang, M., Lu, H., Dong, H., Yu, H., Chen, S., Ran, X., Song, L., … Huang, W. (2021). Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nature Energy, 6(1), 38–45. https://doi.org/10.1038/s41560-020-00721-5

Loew, M. H. (2022). Brief history of Image Processing at SPIE Medical Imaging. Journal of Medical Imaging, 9(S1), 12209–12209. https://doi.org/10.1117/1.JMI.9.S1.S12209

Lozi, J., Ahn, K., Clergeon, C., Deo, V., Guyon, O., Hattori, T., Minowa, Y., Nishiyama, S., Ono, Y. ., & Vievard, S. (2022). AO3000 at Subaru: combining for the first time a NIR WFS using First Light’s C-RED ONE and ALPAO’s 64x64 DM. In D. Schmidt, L. Schreiber, & E. Vernet (Eds.), Adaptive Optics Systems VIII: Vol. VIII (Vol. (p. 111). SPIE. https://doi.org/10.1117/12.2630634

Mercaldo, L. V., Addonizio, M. L., Noce, M. Della, Veneri, P. D., Scognamiglio, A., & Privato, C. (2018). Thin-film silicon photovoltaics: Architectural perspectives and technological issues. In Renewable Energy: Four Volume Set (Vols. 2–4, pp. 305–322). Routledge. https://doi.org/10.4324/9781315793245-65

Mohammad, A., & Mahjabeen, F. (2023). From Silicon to Sunlight: Exploring the Evolution of Solar Cell Materials. JURIHUM: Jurnal Inovasi Dan Humaniora, 1(2), 316–330. Retrieved from http://jurnalmahasiswa.com/index.php/Jurihum/article/view/409

Muliyadi, L., Doyan, A., Susilawati, S., & Hakim, S. (2019). Synthesis of SnO2 Thin Layer with a Doping Fluorine by Sol-Gel Spin Coating Method. Jurnal Penelitian Pendidikan IPA, 5(2). https://doi.org/10.29303/jppipa.v5i2.257

Munandar, H., Doyan, A., & Susilawati. (2020). Synthesis of SnO2 Thin Coatings by Indium and Aluminum Mixed Doping using the Sol-Gel Spin-Coating Technique. Jurnal Penelitian Pendidikan IPA, 6(2), 153–156. https://doi.org/10.29303/jppipa.v6i2.391

Ng, Z. C., Lau, W. J., Matsuura, T., & Ismail, A. F. (2021). Thin film nanocomposite RO membranes: Review on fabrication techniques and impacts of nanofiller characteristics on membrane properties. Chemical Engineering Research and Design, 165, 81–105. https://doi.org/10.1016/j.cherd.2020.10.003

Nykyruy, L. I., Yavorskyi, R. S., Zapukhlyak, Z. R., Wisz, G., & Potera, P. (2019). Evaluation of CdS/CdTe thin film solar cells: SCAPS thickness simulation and analysis of optical properties. Optical Materials, 92, 319–329. https://doi.org/10.1016/j.optmat.2019.04.029

Oltarzhevskyi, D. O. (2019). Typology of contemporary corporate communication channels. Corporate Communications: An International Journal, 24(4), 608–622. https://doi.org/10.1108/CCIJ-04-2019-0046

Pant, N., Kulkarni, A., Yanagida, M., Shirai, Y., Miyasaka, T., & Miyano, K. (2020). Investigating the Growth of CH 3 NH 3 PbI 3 Thin Films on RF‐Sputtered NiO x for Inverted Planar Perovskite Solar Cells: Effect of CH 3 NH 3 + Halide Additives versus CH3NH3+ Halide Vapor Annealing. Advanced Materials Interfaces, 7(3), 1901748. https://doi.org/10.1002/admi.201901748

Park, M. H., Lee, Y. H., Mikolajick, T., Schroeder, U., & Hwang, C. S. (2018). Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Communications, 8(3), 795–808. https://doi.org/10.1557/mrc.2018.175

Qasem, A., Mostafa, M. S., Yakout, H. A., Mahmoud, M., & Shaaban, E. R. (2022). Determination of optical bandgap energy and optical characteristics of Cd30Se50S20 thin film at various thicknesses. Optics & Laser Technology, 148, 107770. https://doi.org/10.1016/j.optlastec.2021.107770

Qin, F., Chen, X., Yi, Z., Yao, W., Yang, H., Tang, Y., Yi, Y., Li, H., & Yi, Y. (2020). Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Solar Energy Materials and Solar Cells, 211, 110535. https://doi.org/10.1016/j.solmat.2020.110535

Rizaldi, D. R., Doyan, A., & Susilawati, S. (2021). Sintesis Lapisan Tipis TiO2:(F+In) pada Substrat Kaca Dengan Metode Spin-Coating Sebagai Bahan Sel Surya. ORBITA: Jurnal Kajian, Inovasi Dan Aplikasi Pendidikan Fisika, 7(1), 219. https://doi.org/10.31764/orbita.v7i1.4655

Romeo, A., & Artegiani, E. (2021). CdTe-Based Thin Film Solar Cells: Past, Present and Future. Energies, 14(6), 1684. https://doi.org/10.3390/en14061684

Sang, M., Shin, J., Kim, K., & Yu, K. (2019). Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications. Nanomaterials, 9(3), 374. https://doi.org/10.3390/nano9030374

Sengupta, K., Nagatsuma, T., & Mittleman, D. M. (2018). Terahertz integrated electronic and hybrid electronic–photonic systems. Nature Electronics, 1(12), 622–635. https://doi.org/10.1038/s41928-018-0173-2

Sinha, T., Lilhare, D., & Khare, A. (2019). A review on the improvement in performance of CdTe/CdS thin-film solar cells through optimization of structural parameters. Journal of Materials Science, 54(19), 12189–12205. https://doi.org/10.1007/s10853-019-03651-0

Suseno, B. A., & Fauziah, E. (2020). Improving Penginyongan Literacy in Digital Era Through E-Paper Magazine of Ancas Banyumasan. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3807680

Susilawati, S., Doyan, A., Muliyadi, L., & Hakim, S. (2019). Growth of Tin Oxide Thin Film by Aluminum and Fluorine Doping Using Spin Coating Sol-Gel Techniques. Jurnal Penelitian Pendidikan IPA, 6(1). https://doi.org/10.29303/jppipa.v6i1.264

Vyas, S. (2020). A Short Review on Properties and Applications of Zinc Oxide Based Thin Films and Devices. Johnson Matthey Technology Review, 64(2), 202–218. https://doi.org/10.1595/205651320X15694993568524

Wan, S., Li, Y., Li, W., Mao, X., Zhu, W., & Zeng, H. (2018). Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In 2 Se 3 thin layers. Nanoscale, 10(31), 14885–14892. https://doi.org/10.1039/C8NR04422H

Wei, Y., Nukala, P., Salverda, M., Matzen, S., Zhao, H. J., Momand, J., Íñiguez, J., Dkhil, B., & Noheda, B. (2019). A rhombohedral ferroelectric phase in epitaxially. Nature Materials, 17(12), 1095–1100. Retrieved from https://www.nature.com/articles/s41563-018-0196-0

Yang, Z., Sun, P.-F., Li, X., Gan, B., Wang, L., Song, X., Park, H.-D., & Tang, C. Y. (2020). A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. Environmental Science & Technology, 54(24), 15563–15583. https://doi.org/10.1021/acs.est.0c05377

Zhao, J., Chi, Z., Yang, Z., Chen, X., Arnold, M. S., Zhang, Y., Xu, J., Chi, Z., & Aldred, M. P. (2018). Recent developments of truly stretchable thin film electronic and optoelectronic devices. Nanoscale, 10(13), 5764–5792. https://doi.org/10.1039/C7NR09472H

Zhu, D., Shao, L., Yu, M., Cheng, R., Desiatov, B., Xin, C. J., Hu, Y., Holzgrafe, J., Ghosh, S., Shams-Ansari, A., Puma, E., Sinclair, N., Reimer, C., Zhang, M., & Lončar, M. (2021). Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics, 13(2), 242. https://doi.org/10.1364/AOP.411024

Author Biographies

Susilawati Susilawati, Master of Science Education, University of Mataram, Mataram, Indonesia

Aris Doyan, Master of Science Education, University of Mataram, Mataram, Indonesia

Ibrahim Ibrahim, Department of Primary Teacher Education, University of Mataram, Indonesia.

Sukainil Ahzan, Department of Physics Education, Universitas Pendidikan Mataram, Indonesia.

Sifaul Gummah, Department of Physics Education, Universitas Pendidikan Mataram, Indonesia.

Bahtiar Bahtiar, Department of Physics Education, Universitas Islam Negeri Mataram, Indonesia.

Muhammad Ikhsan, Department of Primary Information Systems, Diponorogo University, Indonesia.

Syamsul Hakim, SMAN 1 Pringgarata, Lombok Tengah, Ptovinsi Nusa Tenggara Barat, Indonesia

Lalu Muliyadi, Master of Science Education, University of Mataram, Mataram, Indonesia

Haris Munandar, Master of Science Education, University of Mataram, Mataram, Indonesia


Copyright (c) 2024 Susilawati Susilawati, Aris Doyan, Agus Abi Purwoko, Ibrahim Ibrahim, Sukainil Ahzan, Sifaul Gummah, Bahtiar Bahtiar, Muhammad Ikhsan, Syamsul Hakim, Lalu Muliyadi, Haris Munandar

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).