Simultaneous Detection of Glucose and Acetoacetate in Artificial Urine Samples Using 3D-Connector Microfluidic Paper Based Analytical Devices

Authors

Ahmad Luthfi Fahmi , Kamila Rohadatul ‘Aisy , Ika Oktavia Wulandari , Hermin Sulistyarti , Akhmad Sabarudin

DOI:

10.29303/jppipa.v10i12.7825

Published:

2024-12-18

Issue:

Vol. 10 No. 12 (2024): In Progress

Keywords:

Biomarkers, Diabetes, Non-enzymatic, Paper-based devices

Research Articles

Downloads

How to Cite

Fahmi, A. L., ‘Aisy, K. R., Wulandari, I. O., Sulistyarti, H., & Sabarudin, A. (2024). Simultaneous Detection of Glucose and Acetoacetate in Artificial Urine Samples Using 3D-Connector Microfluidic Paper Based Analytical Devices. Jurnal Penelitian Pendidikan IPA, 10(12), 10053–10064. https://doi.org/10.29303/jppipa.v10i12.7825

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Diabetic patients sometimes experience both hyperglycemia and hyperketonemia simultaneously. This condition requires proper management of glucose and ketone body biomarkers. The fluctuating intensity of these biomarkers necessitates regular monitoring. This study aims to develop concept non-enzymatic measurement method by integrating µPADs (microfluidic paper-based analytical devices) for detecting glucose and acetoacetate in artificial urine samples. The method uses silver nanoparticle formation for glucose detection and Schiff base reaction as well as the Rothera test for acetoacetate detection. Optimal conditions found include the glucose detection zone with volume ratio of AgNO3 500 mM : starch 3% (w/v) (1 : 1), and the acetoacetate detection zone with glycine 900 mM in phosphate buffer pH 9.4. The artificial urine sample combination consists of glucose, acetoacetate, and acetone with volume ratio of (1 : 1 : 1). The 3D-Connector for glucose uses NaOH 10 M : starch 3% (w/v) with volume ratio of (1 : 3), while for acetoacetate, sodium nitroprusside 15% (w/w) in DMF 5% (v/v). Validity for glucose measurement shows linearity (R² = 0.9664), precision (RSD = 4.56%), accuracy (88.75 – 99.62%), LOD (1.61 mM), and LOQ (5.37 mM). Conversely, acetoacetate measurement shows linearity (R² = 0.9636), precision (RSD = 1.24%), accuracy (99.44 – 99.73%), LOD (1.41 mM), and LOQ (4.69 mM).

References

Al-Jaf, S. H., & Omer, K. M. (2022). Enhancing of Detection Resolution Via Designing of a Multi-Functional 3D Connector between Sampling and Detection Zones in Distance-Based Microfluidic Paper-Based Analytical Device: Multi-Channel Design for Multiplex Analysis. Microchimica Acta, 189(482), 1–10. https://doi.org/10.1007/s00604-022-05585-y

Al-Jaf, S. H., & Omer, K. M. (2023). Accuracy Improvement Via Novel Ratiometry Design in Distance-Based Microfluidic Paper Based Analytical Device: Instrument-Free Point of Care Testing. RSC Advances, 13(23), 15704–15713. https://doi.org/10.1039/d3ra01601c

Berber, N., & Arslan, M. (2020). Preparation and Characterization of Some Schiff Base Compounds. Adiyaman University Journal of Science, 10(1), 179–188. https://doi.org/10.37094/adyujsci.633080

Chen, Z., Wright, C., Dincel, O., Chi, T. Y., & Kameoka, J. (2020). A Low-Cost Paper Glucose Sensor with Molecularly Imprinted Polyaniline Electrode. Sensors (Switzerland), 20(4), 1–11. https://doi.org/10.3390/s20041098

Crawford, S. G., Coker, R. H., & Rea, L. D. (2024). Preliminary Comparisons between a Point-of-Care Ketometer and Reference Method Using Steller Sea Lion Pup Whole Blood and Plasma. Conservation Physiology, 12(1), 1–10. https://doi.org/10.1093/conphys/coad104

El-Shishtawy, R. M., Angari, Y. M. A., Alotaibi, M. M., & Almulaiky, Y. Q. (2023). Novel and Facile Colorimetric Detection of Reducing Sugars in Foods Via In Situ Formed Gelatin-Capped Silver Nanoparticles. Polymers, 15(5), 1–13. https://doi.org/10.3390/polym15051086

Fahmi, A. L., ’Aisy, K. R., Wulandari, I. O., Sulistyarti, H., & Sabarudin, A. (2024). Non-Enzymatic Determination of Glucose in Artificial Urine Using 3D-µPADs Through Silver Nanoparticles Formation. Indonesian Journal of Chemistry, 24(5), 1481. https://doi.org/10.22146/ijc.95588

Fall, B., Sall, D. D., Hémadi, M., Diaw, A. K. D., Fall, M., Randriamahazaka, H., & Thomas, S. (2023). Highly Efficient Non-Enzymatic Electrochemical Glucose Sensor Based on Carbon Nanotubes Functionalized by Molybdenum Disulfide and Decorated with Nickel Nanoparticles (GCE/CNT/MoS2/NiNPs). Sensors and Actuators Reports, 5, 1–11. https://doi.org/10.1016/j.snr.2022.100136

Fu, L.-M., Hsu, J.-H., Shih, M.-K., Hsieh, C.-W., Ju, W.-J., Chen, Y.-W., Lee, B. H., & Hou, C.-Y. (2021). Process Optimization of Silver Nanoparticle Synthesis and Its Application in Mercury Detection. Micromachines, 12(9), 1–16. https://doi.org/10.3390/mi12091123

Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21(17), 1–34. https://doi.org/10.3390/ijms21176275

Gonzales, W. V., Mobashsher, A. T., & Abbosh, A. (2019). The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors (Switzerland), 19, 1–45. https://doi.org/10.3390/s19040800

Hassan, E. M., Mushtaq, H., Mahmoud, E. E., Chhibber, S., Saleem, S., Issa, A., Nitesh, J., Jama, A. B., Khedr, A., Boike, S., Mir, M., Attallah, N., Surani, S., & Khan, S. A. (2022). Overlap of Diabetic Ketoacidosis and Hyperosmolar Hyperglycemic State. World Journal of Clinical Cases, 10(32), 11702–11711. https://doi.org/10.12998/wjcc.v10.i32.11702

Hemmati, S., Retzlaff-Roberts, E., Scott, C., & Harris, M. T. (2019). Artificial Sweeteners and Sugar Ingredients as Reducing Agent for Green Synthesis of Silver Nanoparticles. Journal of Nanomaterials, 2019, 1–16. https://doi.org/10.1155/2019/9641860

Hernández-Ramírez, D., Mendoza-Huizar, L. H., Galán-Vidal, C. A., Aguilar-Lira, G. Y., & Álvarez-Romero, G. A. (2022). Development of a Non-Enzymatic Glucose Sensor Based on Fe2O3 Nanoparticles-Carbon Paste Electrodes. Journal of The Electrochemical Society, 169(6), 1–7. https://doi.org/10.1149/1945-7111/ac735c

Hillock, M. F., Jarmon, C., Metropulos, A. E., King, R., Tchernodrinski, S., & Principe, D. R. (2024). Diabetic Ketoacidosis Masked by Both Euglycemia and a Primary Metabolic Alkalosis. Oxford Medical Case Reports, 2024(7), 288–290. https://doi.org/10.1093/omcr/omae071

Hiraoka, R., Kuwahara, K., Wen, Y.-C., Yen, T.-H., Hiruta, Y., Cheng, C.-M., & Citterio, D. (2020). Paper-Based Device for Naked Eye Urinary Albumin/Creatinine Ratio Evaluation. ACS Sensors, 5(4), 1110–1118. https://doi.org/10.1021/acssensors.0c00050

Ibrahim, F. M., & Abdalhadi, S. M. (2021). Performance of Schiff Bases Metal Complexes and Their Ligand in Biological Activity: A Review. Al-Nahrain Journal of Science, 24(1), 1–10. https://doi.org/10.22401/ANJS.24.1.01

Iqbal, M., Zafar, H., Mahmood, A., Niazi, M. B. K., & Aslam, M. W. (2020). Starch-Capped Silver Nanoparticles Impregnated Into Propylamine-Substituted PVA Films with Improved Antibacterial and Mechanical Properties for Wound-Bandage Applications. Polymers, 12(9), 1–17. https://doi.org/10.3390/POLYM12092112

Kausar, F., Sarwar, M., Aslam, A., Jamil, A., Sultana, N., & Shaffqat, G. (2023). Role of Capillary Blood Ketone Assay in Management of Diabetic Ketoacidosis in Paediatric Intensive Care Unit. Pakistan Armed Forces Medical Journal, 73(5), 1448–1451. https://doi.org/10.51253/pafmj.v73i5.9116

Loiseau, A., Asila, V., Boitel-Aullen, G., Lam, M., Salmain, M., & Boujday, S. (2019). Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. Biosensors, 9(2), 1–39. https://doi.org/10.3390/bios9020078

Mukhopadhyay, M., Subramanian, S. G., Durga, K. V., Sarkar, D., & DasGupta, S. (2022). Laser Printing Based Colorimetric Paper Sensors for Glucose and Ketone Detection: Design, Fabrication, and Theoretical Analysis. Sensors and Actuators B: Chemical, 371, 1–10. https://doi.org/10.1016/j.snb.2022.132599

Nasser, S., Vialichka, V., Biesiekierska, M., Balcerczyk, A., & Pirola, L. (2020). Effects of Ketogenic Diet and Ketone Bodies on the Cardiovascular System: Concentration Matters. World Journal of Diabetes, 11(12), 584–595. https://doi.org/10.4239/wjd.v11.i12.584

Nguyen, H. T., Nguyen, T. D., Nguyen, D. P., Thai, N. T. T., & Nguyen, T. H. (2022). Synthesis Efficiency of Silver Nanoparticles by Light-Emitting Diode and Microwave Irradiation Using Starch as a Reducing Agent. Nanotechnology for Environmental Engineering, 7(1), 297–306. https://doi.org/10.1007/s41204-022-00231-7

Nguyen, N. P. U., Dang, N. T., Doan, L., & Nguyen, T. T. H. (2023). Synthesis of Silver Nanoparticles: From Conventional to ‘Modern’ Methods—A Review. Processes, 11(9), 1–17. https://doi.org/10.3390/pr11092617

Poian, A. T. D., & Castanho, M. A. R. B. (2021). Integrative Human Biochemistry. In Integrative Human Biochemistry. Cham: Springer International Publishing.

Ponsanti, K., Tangnorawich, B., Ngernyuang, N., & Pechyen, C. (2020). A Flower Shape-Green Synthesis and Characterization of Silver Nanoparticles (AgNPs) with Different Starch as a Reducing Agent. Journal of Materials Research and Technology, 9(5), 11003–11012. https://doi.org/10.1016/j.jmrt.2020.07.077

Ramteke, P., Deb, A., Shepal, V., & Bhat, M. K. (2019). Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. Cancers, 11(9), 1–23. https://doi.org/10.3390/cancers11091402

Rather, R. A., Sarwara, R. K., Das, N., & Pal, B. (2019). Impact of Reducing and Capping Agents on Carbohydrates for the Growth of Ag and Cu Nanostructures and Their Antibacterial Activities. Particuology, 43, 219–226. https://doi.org/10.1016/j.partic.2018.01.004

Sanchez-Castañeda, M. P., Cañon-Ibarra, A. F., Cruz-Posada, A. F., Sanchez, L. T., Pinzon, M. I., & Villa, C. C. (2020). Synthesis and Characterization of Starch Stabilized Ag Nanoparticles Effect of the Crystalline Structure of Starch. Journal of Physics: Conference Series, 1541(1), 1–6. https://doi.org/10.1088/1742-6596/1541/1/012003

Sayakulu, N. F., & Soloi, S. (2022). The Effect of Sodium Hydroxide (NaOH) Concentration on Oil Palm Empty Fruit Bunch (OPEFB) Cellulose Yield. Journal of Physics: Conference Series, 2314(1), 012017. https://doi.org/10.1088/1742-6596/2314/1/012017

Susana, E., Ramli, K., Purnamasari, P. D., & Apriantoro, N. H. (2023). Non-Invasive Classification of Blood Glucose Level Based on Photoplethysmography Using Time–Frequency Analysis. Information (Switzerland), 14(3), 1–18. https://doi.org/10.3390/info14030145

Taha, M. F., Ashraf, H., & Caesarendra, W. (2020). A Brief Description of Cyclic Voltammetry Transducer-Based Non-Enzymatic Glucose Biosensor Using Synthesized Graphene Electrodes. Applied System Innovation, 3(3), 1–33. https://doi.org/10.3390/asi3030032

Tarmizi, Z. I., Burhanuddin, M. F. B., Shahrul, M., Mokhtar, M. A. M., Zhe, J. C., Taib, S. H. M., & Sukri, S. N. A. (2022). Preparation and Characterization of Acetylated Starch Mediated Silver Nanoparticles: The Effect of Solution Ratio and Time-Varying Exposure. Journal of Physics: Conference Series, 2259(1), 012005. https://doi.org/10.1088/1742-6596/2259/1/012005

Wu, B., Xue, Q., Fan, Y., Cui, D., Sun, Y., Xu, B. B., Wei, H., Li, H., Wasnik, P., Sridhar, D., Algadi, H., Guo, Z., & Annamareddy, S. H. K. (2023). Multifunctional Polymer Nanocomposites for Non-Enzymatic Glucose Detection: A Brief Review. ES Food & Agroforestry, 12, 1–11. https://doi.org/10.30919/esfaf859

Yu, P., Deng, M., Yang, Y., Nie, B., & Zhao, S. (2020). 3D Microfluidic Devices in a Single Piece of Paper for the Simultaneous Determination of Nitrite and Thiocyanate. Sensors (Switzerland), 20(15), 1–15. https://doi.org/10.3390/s20154118

Zhang, Z., Yang, G., He, M., Qi, L., Li, X., & Chen, J. (2022). Synthesis of Silver Nanoparticles and Detection of Glucose via Chemical Reduction with Nanocellulose as Carrier and Stabilizer. International Journal of Molecular Sciences, 23(23), 1–13. https://doi.org/10.3390/ijms232315345

Author Biographies

Ahmad Luthfi Fahmi, Brawijaya University

Kamila Rohadatul ‘Aisy, Brawijaya University

Ika Oktavia Wulandari, Brawijaya University

Hermin Sulistyarti, Brawijaya University

Akhmad Sabarudin, Brawijaya University

License

Copyright (c) 2024 Ahmad Luthfi Fahmi, Kamila Rohadatul ‘Aisy, Ika Oktavia Wulandari, Hermin Sulistyarti, Akhmad Sabarudin

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).